Computer Science ›› 2015, Vol. 42 ›› Issue (9): 313-319.doi: 10.11896/j.issn.1002-137X.2015.09.062

Previous Articles    

Locality-sensitive Discriminant Sparse Representation for Video Semantic Analysis

WANG Min-chao, ZHAN Yong-zhao, GOU Jian-ping and MAO Qi-rong   

  • Online:2018-11-14 Published:2018-11-14

Abstract: Video semantic analysis has been a research hotspot.Traditional sparse representation methods cannot produce similar coding result when the input video features are close to each other.We assumed that similar video features should be encoded as similar sparse codes in the process of video semantic analysis based on sparse representation.In other words,the similar video features should have smaller distance between their sparse codes.In order to improve the accuracy of video semantic analysis,locality-sensitive discriminant sparse representation(LSDSR) based on the hypothesis for video semantic analysis was developed.In proposed method,discriminant loss function based on sparse coefficient is introduced into the locality-sensitive sparse representation.An optimization dictionary is generated with the constraint.In the process,the sparse coding coefficients have both small within-class scatter and large between-class scatter using Fisher criterion,so as to build the discriminant sparse model in the LSDSR.The proposed method was extensively evaluated on related video databases in comparison with existing sparse representation methods.The experimental results show that this method significantly enhances the power of discrimination of sparse representation features,and consequently improves the accuracy of video semantic analysis.

Key words: Video semantic,Sparse representation,Locality-sensitive,Discriminant

[1] Zou Yue-xian,Shi Guang-yi,Shi Hang,et al.Trafficincident classification at intersections based on image sequences by HMM/SVM classifiers[J].Multimedia Tools and Applications,2011,52(1):133-145
[2] Xu Gu,Ma Yu-fei,Zhang Hong-jiang,et al.An HMM-basedframework for video semantic analysis[J].IEEE Transactions on Circuits and Systems for Video Technology,2005,15(11):1422-1433
[3] You Jun-yong,Liu Gui-zhong,Perkis A.A semantic framework for video genre classification and event analysis[J].Signal Processing:Image Communication,2010,25(4):287-302
[4] Elad M,Aharon M.Image denoising via sparse and redundantrepresentations over learned dictionaries[J].IEEE Transactions on Image Processing,2006,15(12):3736-3745
[5] Mairal J,Elad M,Sapiro G.Sparse representation for color ima-ge restoration[J].IEEE Transactions on Image Processing,2008,17(1):53-69
[6] Bryt O,Elad M.Compression of facial images using the K-SVD algorithm[J].Journal of Visual Communication and Image Representation,2008,19(4):270-282
[7] Han Ya-hong,Wu Fei,Zhuang Yue-ting,et al.Multi-label transfer learning with sparse representation[J].IEEE Transactions on Circuits and Systems for Video Technology,2010,20(8):1110-1121
[8] Aharon M,Elad M,Bruckstein A.K-SVD:An algorithm for designing over-complete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322
[9] Yang Meng,Zhang Lei.Gabor feature based sparse representation for face recognition with gabor occlusion dictionary[C]∥Proceedings of the 11th European Conference on Computer Vision.2010:448-461
[10] Zhang Qiang,Li Bao-xin.Discriminative K-SVD for dictionary learning in face recognition[C]∥Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Re-cognition.2010:2691-2698
[11] Yang Meng,Zhang Lei,Yang Jian,et al.Metaface learning for sparse representation based face recognition[C]∥Proceedings of the 17th IEEE International Conference on Image Proces-sing.2010:1601-1604
[12] Wright J,Yang A Y,Ganesh A,et al.Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227
[13] Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326
[14] Wang Jin-jun,Yang Jian-chao,Yu Kai,et al.Locality-constrainedlinear coding for image classification[C]∥Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2010:3360-3367
[15] Chao Yu-wei,Yeh Y R,Chen Yu-wen,et al.Locality-constrained group sparse representation for robust face recognition[C]∥Proceedings of the 18th IEEE International Conference on Image Processing.2011:761-764
[16] Yang Meng,Zhang Lei,Feng Xiang-chu,et al.Fisher discrimina-tion dictionary learning for sparse representation[C]∥Procee-dings of the IEEE International Conference on Computer Vision.2011:543-550
[17] Ma Long,Wang Chun-heng,Xiao Bai-hua,et al.Sparse representation for face recognition based on discriminative low-rank dictionary learning[C]∥Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2012:2586-2593
[18] Wei Chia-po,Chao Yu-wei,Yeh Y R,et al.Locality-sensitivedictionary learning for sparse representation based classification[J].Pattern Recognition,2013,46(5):1277-1287
[19] 詹永照,汪满容,柯佳.基于人工免疫有序聚类的视频关键帧提取方法[J].江苏大学学报(自然科学版),2012,33(2):199-204Zhan Yong-zhao,Wang Man-rong,Ke Jia.Video key-frame extraction using ordered samples clustering based on artificial immune[J].Journal of Jiangsu University(Natural Science Edition),2012,33(2):199-204
[20] Wang Yi-ding,Yan Qing-yu,Li Ke-feng.Hand vein recognition based on multi-scale LBP and wavelet[C]∥Proceedings of the 2011 International Conference on Wavelet Analysis and Pattern Recognition.2011:214-218

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LEI Li-hui and WANG Jing. Parallelization of LTL Model Checking Based on Possibility Measure[J]. Computer Science, 2018, 45(4): 71 -75, 88 .
[2] XIA Qing-xun and ZHUANG Yi. Remote Attestation Mechanism Based on Locality Principle[J]. Computer Science, 2018, 45(4): 148 -151, 162 .
[3] LI Bai-shen, LI Ling-zhi, SUN Yong and ZHU Yan-qin. Intranet Defense Algorithm Based on Pseudo Boosting Decision Tree[J]. Computer Science, 2018, 45(4): 157 -162 .
[4] WANG Huan, ZHANG Yun-feng and ZHANG Yan. Rapid Decision Method for Repairing Sequence Based on CFDs[J]. Computer Science, 2018, 45(3): 311 -316 .
[5] SUN Qi, JIN Yan, HE Kun and XU Ling-xuan. Hybrid Evolutionary Algorithm for Solving Mixed Capacitated General Routing Problem[J]. Computer Science, 2018, 45(4): 76 -82 .
[6] ZHANG Jia-nan and XIAO Ming-yu. Approximation Algorithm for Weighted Mixed Domination Problem[J]. Computer Science, 2018, 45(4): 83 -88 .
[7] WU Jian-hui, HUANG Zhong-xiang, LI Wu, WU Jian-hui, PENG Xin and ZHANG Sheng. Robustness Optimization of Sequence Decision in Urban Road Construction[J]. Computer Science, 2018, 45(4): 89 -93 .
[8] LIU Qin. Study on Data Quality Based on Constraint in Computer Forensics[J]. Computer Science, 2018, 45(4): 169 -172 .
[9] ZHONG Fei and YANG Bin. License Plate Detection Based on Principal Component Analysis Network[J]. Computer Science, 2018, 45(3): 268 -273 .
[10] SHI Wen-jun, WU Ji-gang and LUO Yu-chun. Fast and Efficient Scheduling Algorithms for Mobile Cloud Offloading[J]. Computer Science, 2018, 45(4): 94 -99, 116 .