Computer Science ›› 2016, Vol. 43 ›› Issue (2): 179-182, 209.doi: 10.11896/j.issn.1002-137X.2016.02.039

Previous Articles     Next Articles

Correctness Analysis and Improvement of Group Signature in Composite Order Bilinear Groups

YU Jia-fu, ZHONG Hong and WANG Yi-min   

  • Online:2018-12-01 Published:2018-12-01

Abstract: Zhou Fu-cai et al proposed an efficient group signature scheme based on BMW model by utilizing the composi-te order bilinear groups theory and non-interactive zero knowledge proof system.However,this study demonstrates that there are some deficiencies in Zhou’s scheme that signature verifier cannot verify signer’s ID correctly and cannot finish the signature verification.Then,the authors provided an improved scheme and proved its security strictly.The proposed scheme corrects the errors by adding the commitment to signer’s ID and corresponding non-interactive zero knowledge proof.At last,this paper compared the security and efficiency respectively with the similar group signatures.And the result of analysis shows that the improved scheme resolves the problem of Zhou’s scheme in the premise of assuring the security and efficiency.

Key words: Group signature,Composite order bilinear groups,Non-interactive zero knowledge proof,Correctness analysis

[1] Chaum D,Van Heyst E.Group signatures[M]∥Advances in Cryptology-EUROCRYPT’91.Springer Berlin Heidelberg,1991:257-265
[2] Bellare M,Rogaway P.Random oracles are practical:A paradigm for designing efficient protocols[C]∥Proceedings of the 1st ACM Conference on Computer and Communications Security.ACM,1993:62-73
[3] Canetti R,Goldreich O,Halevi S.The random oracle methodology,revisited[J].Journal of the ACM (JACM),2004,51(4):557-594
[4] Bellare M,Micciancio D,Warinschi B.Foundations of group signatures:Formal definitions,simplified requirements,and a construction based on general assumptions [M]∥Advances in Cryptology-Eurocrypt 2003.Springer Berlin Heidelberg,2003:614-629
[5] Boyen X,Waters B.Full-domain subgroup hiding and constant-size group signatures[M]∥Public Key Cryptography-PKC 2007.Springer Berlin Heidelberg,2007:1-15
[6] Groth J,Ostrovsky R,Sahai A.Non-interactive zaps and newtechniques for NIZK[M]∥Advances in Cryptology-CRYPTO 2006.Springer Berlin Heidelberg,2006:97-111
[7] Groth J.Fully anonymous group signatures without random oracles[M]∥Advances in Cryptology-ASIACRYPT 2007.Springer Berlin Heidelberg,2007:164-180
[8] Emura K,Hanaoka G,Sakai Y.Group signature implies PKE with non-interactive opening and threshold PKE[M]∥Advances in Information and Computer Security.Springer Berlin Heidelberg,2010:181-198
[9] Wei L,Liu J.Shorter verifier-local revocation group signaturewith backward unlinkability[M]∥Pairing-Based Cryptography-Pairing 2010.Springer Berlin Heidelberg,2010:136-146
[10] Libert B,Vergnaud D.Group signatures with verifier-localrevocation and backward unlinkability in the standard model[M]∥Cryptology and Network Security.Springer Berlin Heidelberg,2009:498-517
[11] Groth J,Ostrovsky R,Sahai A.Perfect non-interactive zeroknowledge for NP[M]∥Advances in Cryptology-EUROCRYPT 2006.Springer Berlin Heidelberg,2006:339-358
[12] Yang G,Tang S,Yang L.A novel group signature scheme based on mpkc[M]∥Information Security Practice and Experience.Springer Berlin Heidelberg,2011:181-195
[13] Zhou F C,Xu J,Wang L L,et al.A group signature in the composite order bilinear groups[J].Chinese Journal of Computers,2012,35(4):654-663(in Chinese) 周福才,徐剑,王兰兰,等.基于组合阶双线性群的组签名方案[J].计算机学报,2012,35(4):654-663
[14] Lewko A,Waters B.New techniques for dual system encryption and fully secure HIBE with short ciphertexts [M]∥Theory of Cryptography.Springer Berlin Heidelberg,2010:455-479
[15] Groth J,Sahai A.Efficient non-interactive proof systems for bilinear groups[M]∥Advances in Cryptology-EUROCRYPT 2008.Springer Berlin Heidelberg,2008:415-432

No related articles found!
Full text



[1] LEI Li-hui and WANG Jing. Parallelization of LTL Model Checking Based on Possibility Measure[J]. Computer Science, 2018, 45(4): 71 -75, 88 .
[2] XIA Qing-xun and ZHUANG Yi. Remote Attestation Mechanism Based on Locality Principle[J]. Computer Science, 2018, 45(4): 148 -151, 162 .
[3] LI Bai-shen, LI Ling-zhi, SUN Yong and ZHU Yan-qin. Intranet Defense Algorithm Based on Pseudo Boosting Decision Tree[J]. Computer Science, 2018, 45(4): 157 -162 .
[4] WANG Huan, ZHANG Yun-feng and ZHANG Yan. Rapid Decision Method for Repairing Sequence Based on CFDs[J]. Computer Science, 2018, 45(3): 311 -316 .
[5] SUN Qi, JIN Yan, HE Kun and XU Ling-xuan. Hybrid Evolutionary Algorithm for Solving Mixed Capacitated General Routing Problem[J]. Computer Science, 2018, 45(4): 76 -82 .
[6] ZHANG Jia-nan and XIAO Ming-yu. Approximation Algorithm for Weighted Mixed Domination Problem[J]. Computer Science, 2018, 45(4): 83 -88 .
[7] WU Jian-hui, HUANG Zhong-xiang, LI Wu, WU Jian-hui, PENG Xin and ZHANG Sheng. Robustness Optimization of Sequence Decision in Urban Road Construction[J]. Computer Science, 2018, 45(4): 89 -93 .
[8] LIU Qin. Study on Data Quality Based on Constraint in Computer Forensics[J]. Computer Science, 2018, 45(4): 169 -172 .
[9] ZHONG Fei and YANG Bin. License Plate Detection Based on Principal Component Analysis Network[J]. Computer Science, 2018, 45(3): 268 -273 .
[10] SHI Wen-jun, WU Ji-gang and LUO Yu-chun. Fast and Efficient Scheduling Algorithms for Mobile Cloud Offloading[J]. Computer Science, 2018, 45(4): 94 -99, 116 .