Computer Science ›› 2017, Vol. 44 ›› Issue (10): 216-221, 227.doi: 10.11896/j.issn.1002-137X.2017.10.039

Previous Articles     Next Articles

Adaptive Water Wave Optimization Algorithm Based on Simulated Annealing

WANG Wan-liang, CHEN Chao, LI Li and LI Wei-kun   

  • Online:2018-12-01 Published:2018-12-01

Abstract: Water wave optimization (WWO) is a novel evolutionary algorithm inspired by the shallow wave theory.In this paper,we developed a modified version of simplified water wave optimization algorithm (SimWWO).To fully utilize the history information and experience of the waves,we proposed an adaptive parameter adjustment strategy.The performance of waves on the evolutionary process is used as a feedback to adjust the wave length coefficient adaptively to improve search efficiency.Meanwhile,to avoid the problem of easily being lost in local optimum,the thought of simulated annealing is adopted to accept inferior solution with a certain probability.Through the above two operations,the algorithm achieves better balance between global search and local search.Computational experiments on the CEC 2015 single-objective optimization test problems show that the modified algorithm effectively improves the overall performance.

Key words: Evolutionary algorithms,Water wave optimization,Adaptive parameter,Simulated annealing

[1] WEN Y,PAN D Z.Improved Genetic Algorithm for Traveling Salesman Problem[J].Computer Science,2016,3(6):90-92.(in Chinese) 文艺,潘大志.用于求解TSP问题的改进遗传算法[J].计算机科学,2016,3(6):90-92.
[2] SUN Z L,LI X Y,WANG Y.Improved Simple Particle Swarm Optimization Algorithm[J].Computer Science,2015,2(11):86-88.(in Chinese) 孙振龙,李晓晔,王颖.一种改进的简化粒子群优化算法[J].计算机科学,2015,2(11):86-88.
[3] DORIGO M,BIRATTARI M,STTZLE T.Ant colony optimi- zation[J].Computational Intelligence Magazine IEEE,2006,1(4):28-39.
[4] WOLPERT D H,MACREADY W G.No free lunch theorems for optimization[J].IEEE Transactions on Evolutionary Computation,1997,1(1):67-82.
[5] YANG X,HOSSEIN GANDOMI A.Bat algorithm:a novel approach for global engineering optimization[J].Engineering Computations,2012,29(5):464-483.
[6] RASHEDI E,NEZAMABADI-POUR H,SARAZDI S.GSA:agravitational search algorithm[J].Information Sciences,2009,179(13):2232-2248.
[7] OFTADEH R,MAHJOOB M J,S HARIATPANAHI M.A novel meta-heuristic optimization algorithm inspired by group hunting of animals:Hunting search[J].Computers & Mathematics with Applications,2010,60(7):2087-2098.
[8] SIMON D.Biogeography-based optimization[J].IEEE Transactions on Evolutionary Computation,2008,12(6):702-713.
[9] ZHENG Y J.Water wave optimization:a new nature-inspiredmetaheuristic[J].Computers & Operations Research,2015,55:1-11.
[10] WU X B,LIAO J,WANG Z C.Water Wave Optimization for the Traveling Salesman Problem[M]∥ Inteligent Computing Theories and Methodolgies.Springer International Publishing,2015:137-146.
[11] YANG F,HU C P,YAN X F.Particle swarm opti mization algorithm of self-adaptive parameter based on ant system and its application[J].Control Theory & Applications,2010,27(11):1479-1488.(in Chinese) 杨帆,胡春平,颜学峰.基于蚁群系统的参数自适应粒子群算法及其应用[J].控制理论与应用,2010,27(11):1479-1488.
[12] YANG X,YUAN J,et al.A modified particle swarm optimizer with dynamic adaptation[J].Applied Mathematics and Computation,2007,189(2):1205-1213.
[13] PANIGRAHI B K,PANDI V R,DAS S.Adaptive particleswarm optimization approach for static and dynamic economic load dispatch[J].Energy Conversion and Management,2008,49(6):1407-1415.
[14] NICKABADI A,EBADZADEH M M,SAFABAKHSH R.Anovel particle swarm optimization algorithm with adaptive inertia weight[J].Applied Soft Computing,2011,11(4):3658-3670.
[15] TANWEER M R,SURESH S,S UNDARARAJAN N.Self regulating particle swarm optimization algorithm[J].Information Sciences,2015,4(10):182-202.
[16] GAO Y,XIE S L.Particle swarm optimization algorithm based on Simulated annealing [J].Computer Engineering and Applications,2004,40(1):47-50.(in Chinese) 高鹰,谢胜利.基于模拟退火的粒子群优化算法[J].计算机工程与应用,2004,40(1):47-50.
[17] LIU A J,YANG Y,LI F,et al.Chaotic simulated annealing par- ticle swarm optimization algorithm research and its application[J].Journal of Zhejiang University (Engineering Science),2013,47(10):1722-1730.(in Chinese) 刘爱军,杨育,李斐,等.混沌模拟退火粒子群优化算法研究及应用[J].浙江大学学报(工学版),2013,47(10):1722-1730.
[18] DAI M,TANG D,GIRET A,et al.Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm[J].Robotics and Computer-Integrated Manufacturing,2013,29(5):418-429.
[19] ZHENG Y,ZHANG B.A simplified water wave optimization algorithm[C]∥2015 IEEE Congress on Evolutionary Computation (CEC).IEEE,2015:807-813.
[20] DOWSLAND K A,THOMPSON J M.Simulated annealing[M].Handbook of Natural Computing,Springer,2012:1623-1655.
[21] LIANG J J,QU B Y,SUGANTHAN P N,et al.Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization[R].Computational Intelligence Laboratory,2014.
[22] ZHANG B,ZHENG Y J.Convergence Analysis of Water Wave Optimization Algorithm [J].Computer Science,2016,43(4):41-44.(in Chinese) 张蓓,郑宇军.水波优化算法收敛性分析[J].计算机科学,2016,43(4):41-44.

No related articles found!
Full text



[1] LEI Li-hui and WANG Jing. Parallelization of LTL Model Checking Based on Possibility Measure[J]. Computer Science, 2018, 45(4): 71 -75, 88 .
[2] XIA Qing-xun and ZHUANG Yi. Remote Attestation Mechanism Based on Locality Principle[J]. Computer Science, 2018, 45(4): 148 -151, 162 .
[3] LI Bai-shen, LI Ling-zhi, SUN Yong and ZHU Yan-qin. Intranet Defense Algorithm Based on Pseudo Boosting Decision Tree[J]. Computer Science, 2018, 45(4): 157 -162 .
[4] WANG Huan, ZHANG Yun-feng and ZHANG Yan. Rapid Decision Method for Repairing Sequence Based on CFDs[J]. Computer Science, 2018, 45(3): 311 -316 .
[5] SUN Qi, JIN Yan, HE Kun and XU Ling-xuan. Hybrid Evolutionary Algorithm for Solving Mixed Capacitated General Routing Problem[J]. Computer Science, 2018, 45(4): 76 -82 .
[6] ZHANG Jia-nan and XIAO Ming-yu. Approximation Algorithm for Weighted Mixed Domination Problem[J]. Computer Science, 2018, 45(4): 83 -88 .
[7] WU Jian-hui, HUANG Zhong-xiang, LI Wu, WU Jian-hui, PENG Xin and ZHANG Sheng. Robustness Optimization of Sequence Decision in Urban Road Construction[J]. Computer Science, 2018, 45(4): 89 -93 .
[8] LIU Qin. Study on Data Quality Based on Constraint in Computer Forensics[J]. Computer Science, 2018, 45(4): 169 -172 .
[9] ZHONG Fei and YANG Bin. License Plate Detection Based on Principal Component Analysis Network[J]. Computer Science, 2018, 45(3): 268 -273 .
[10] SHI Wen-jun, WU Ji-gang and LUO Yu-chun. Fast and Efficient Scheduling Algorithms for Mobile Cloud Offloading[J]. Computer Science, 2018, 45(4): 94 -99, 116 .