Computer Science ›› 2017, Vol. 44 ›› Issue (Z11): 437-441.doi: 10.11896/j.issn.1002-137X.2017.11A.093

Previous Articles     Next Articles

KDE-CGA Algorithm of Structure Learning for Small Sample Data Bayesian Network

XU Jian-rui, LI Zhan-wu and XU An   

  • Online:2018-12-01 Published:2018-12-01

Abstract: In view of learning the Bayesian network under the condition of the small sample data,this paper firstly made use of kernel density estimation to expand the small scale sample data,then adopted the cloud theory-based genetic algotithm to learn the structure of Bayesian network.In order to improve the effect of data expanding,the paper discussed the way of improving the density function and its window breadth.At the same time,the cloud theory was combined with genetic algotithm.We changed crosses rate and variation rate properly,avoided the problem of looking an excellent answer in a part.Simulation results show that the algorithm is effective and practical.()

Key words: Small sample data,Bayesian network,Structure learning,Kernel density estimation,Cloud theory-based genetic algorithm

[1] 史志富,张安.贝叶斯网络理论及其在军事系统中的应用[M].北京:国防工业出版社,2012:28-52.
[2] 邸若海,高晓光.基于限制型粒子群优化的贝叶斯网络结构学习[J].系统工程与电子技术,2011,3(11):423-427.
[3] FRIEDMAN N.The Bayesian structural EM algorithm[C]∥San Francisco.CA,USA,1998:129-138.
[4] BORCHANI H,AMOR N B,KHALFALLAH F.Learning and evaluating Bayesian Network equivalence classes from incomplete data[J].International Journal of Pattern Recognition and Artificial Intelligence,2008,22(2):253-278.
[5] 徐达明,唐安民,等.概率密度核估计的Bootstrap逼近[J].云南民族大学学报(自然科学版),2007,16(4):295-298.
[6] 刘伟,龙琼,陈芳,等.Bootstrap方法的几点思考[J].飞行器测控学报,2007,6(5):78-81.
[7] 韩绍金,李建勋.基于密度核估计的贝叶斯网络结构学习算法[J].计算机工程与应用,2014,0(15):107-112.
[8] 王金然,郭亚君,吕金凤.一种改进的密度核估计算法[J].大学数学,2008,4(6):67-71.
[9] RAO P.Nonparametric Function Estimation[M].Academie Press,Inc.1983.
[10] 朱亚培.密度核估计的改进及其相关问题的讨论[D].兰州:兰州交通大学,2015.
[11] BASHTANNYK D M,ROB,HYNDMAN J.Bandwidth selection for kernel conditional desity estimation [J].Computation Tatistics & Data Nalysis,2001(36):63-78.
[12] 王星.非参数统计[M].北京:中国人民大学出版社,2005:213-218.
[13] 郭童.基于改进鱼蜂群算法的贝叶斯网络结构学习[D].杭州:浙江大学,2014
[14] 肖秦琨,高嵩.贝叶斯网络在智能信息处理中的应用[M].此京:国防工业出版社,2012:5-20.
[15] SHETTY S,SONG M.Structure learning of Bayesian network using a semantic genetic algorithm-based approach[C]∥Proceedings of the 3rd International Conference on Information Technology:Research and Education.Hsinchu,2005:454-458.
[16] 李德旺,陈兴,喻达磊,等.多维密度核估计的 Bootstrap 逼近[J].西南大学学报(自然科学版),2007,29(11):34-37.
[17] CHOW C,LIU C.Approximation Discrete probability Distributions with Dependence Trees [J].IEEE Transactions on Information Theory,1968,14(3):462-467.
[18] DAVIDSON-PILON C.贝叶斯方法概率编程与贝叶斯推断[M].辛愿,钟黎,等译.北京:人民邮电出版社,2017.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LEI Li-hui and WANG Jing. Parallelization of LTL Model Checking Based on Possibility Measure[J]. Computer Science, 2018, 45(4): 71 -75, 88 .
[2] XIA Qing-xun and ZHUANG Yi. Remote Attestation Mechanism Based on Locality Principle[J]. Computer Science, 2018, 45(4): 148 -151, 162 .
[3] LI Bai-shen, LI Ling-zhi, SUN Yong and ZHU Yan-qin. Intranet Defense Algorithm Based on Pseudo Boosting Decision Tree[J]. Computer Science, 2018, 45(4): 157 -162 .
[4] WANG Huan, ZHANG Yun-feng and ZHANG Yan. Rapid Decision Method for Repairing Sequence Based on CFDs[J]. Computer Science, 2018, 45(3): 311 -316 .
[5] SUN Qi, JIN Yan, HE Kun and XU Ling-xuan. Hybrid Evolutionary Algorithm for Solving Mixed Capacitated General Routing Problem[J]. Computer Science, 2018, 45(4): 76 -82 .
[6] ZHANG Jia-nan and XIAO Ming-yu. Approximation Algorithm for Weighted Mixed Domination Problem[J]. Computer Science, 2018, 45(4): 83 -88 .
[7] WU Jian-hui, HUANG Zhong-xiang, LI Wu, WU Jian-hui, PENG Xin and ZHANG Sheng. Robustness Optimization of Sequence Decision in Urban Road Construction[J]. Computer Science, 2018, 45(4): 89 -93 .
[8] LIU Qin. Study on Data Quality Based on Constraint in Computer Forensics[J]. Computer Science, 2018, 45(4): 169 -172 .
[9] ZHONG Fei and YANG Bin. License Plate Detection Based on Principal Component Analysis Network[J]. Computer Science, 2018, 45(3): 268 -273 .
[10] SHI Wen-jun, WU Ji-gang and LUO Yu-chun. Fast and Efficient Scheduling Algorithms for Mobile Cloud Offloading[J]. Computer Science, 2018, 45(4): 94 -99, 116 .