Computer Science ›› 2017, Vol. 44 ›› Issue (Z6): 33-36.doi: 10.11896/j.issn.1002-137X.2017.6A.007

Previous Articles     Next Articles

Event Sensing and Multimodal Event Vein Generation Leveraging Social Media

XU Cheng-hao, GUO Bin, OUYANG Yi, ZHAI Shu-ying and YU Zhi-wen   

  • Online:2017-12-01 Published:2018-12-01

Abstract: With the development of information technology and popularity of social media,normal users have become information producers from receivers and everyone can share what happened around them and repost what they are interested in,which makes the information stored in social media increase rapidly.The large amount of data contains abundant and valuable records of social events.How to get valuable informations from these data has become one of the most important problems in information field.This paper introduced the new research field,including crowd-powered event sensing and multimodal summarization to solve this problem.Crowd-powered event sensing and multimodal summarization aim at sensing and analyzing events by analyzing multimodal data existed in social media to predict and summarize events effectively.This paper described the modal of event,the history of sensing,the key technology,challenges and wide application field,summarized the development of event sensing and summarization based social media analysis and looked into the future.

Key words: Social media,Event sensing,Multimodal data,Storyline,Cross media

[1] SAKAKI T,OKAZAKI M,MATSUO Y.Earthquake shakesTwitter users:real-time event detection by social sensors [C]∥Proceedings of the 19th International Conference on World Wide Web.ACM,2010:851-860.
[2] HU M D,LIU S X,WEI F R,et al.Breaking news on twitter [C]∥Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.ACM,2012:2751-2754.
[3] PSALLIDAS F,BECKER H,NAAMAN M,et al.EffectiveEvent Identification in Social Media[J].IEEE Data Eng.Bull.,2013,36(3):42-50.
[4] ZIN T T,TIN P,HAMA H,et al.Knowledge based social network applications to disaster event analysis [C]∥Proceedings of the International Multiconference of Engineers and Computer Scientists.2013.
[5] LAMPOS V,CRISTIANINI N.Tracking the flu pandemic bymonitoring the social web[C]∥2010 2nd International Workshop on Cognitive Information Processing.IEEE,2010:411-416.
[6] SAKAKI T,OKAZAKI M,MATSUO Y.Tweet analysis forreal-time event detection and earthquake reporting system deve-lopment[J].IEEE Transactions on Knowledge and Data Engineering,2013,25(4):919-931.
[7] ZHAO S Q,ZHONG L,WICKRAMASURIYA J,et al.Human as real-time sensors of social and physical events:A case study of twitter and sports games[J].arXiv preprint arXiv:1106.4300,2011.
[8] LI R,LEI K H,KHADIWALA R,et al.Tedas:A twitter-based event detection and analysis system[C]∥2012 IEEE 28th International Conference on Data Engineering.IEEE,2012:1273-1276.
[9] AGARWAL P,VAITHIYANATHAN R,SHARMA ARMA S,et al.Catching the Long-Tail:Extracting Local News Events from Twitter[C]∥ICWSM.2012.
[10] PATHAK N,DELONG C,BANERJEE A,et al.Social topicmodels for community extraction[C]∥The 2nd SNA-KDD workshop.2008.
[11] ZHANG H Z,GILES C L,FOLEY H C,et al.Probabilistic community discovery using hierarchical latent gaussian mixture model[C]∥AAAI.2007:663-668.
[12] LI C L,SUN A X,DATTA A.Twevent:segment-based event detection from tweets [C]∥Proceedings of the 21st ACM International Conference on Information and Knowledge Management.ACM,2012:155-164.
[13] PAN C C,MITRA P.Event detection with spatial latent Di-richlet allocation[C]∥Proceedings of the 11th Annual International ACM/IEEE Joint Conference on Digital Libraries.ACM,2011:349-358.
[14] YANG Y M,PIERCE T,CARBONELL J.A study of retrospective and on-line event detection[C]∥Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,1998:28-36.
[15] KLEINBERG J.Bursty and hierarchical structure in streams[J].Data Mining and Knowledge Discovery,2003,7(4):373-397.
[16] FUNG G P C,YU J X,YU P S,et al.Parameter free bursty events detection in text streams[C]∥Proceedings of the 31st International Conference on Very Large Data Bases.VLDB Endowment,2005:181-192.
[17] ZHANG X M,CHEN X M,CHEN Y,et al.Event detection and popularity prediction in microblogging[J].Neurocomputing,2015,149:1469-1480.
[18] CORNEY D,MARTIN C,GKER A.Two Sides to Every Story:Subjective Event Summarization of Sports Events using Twitter[C]∥SoMuS@ICMR.2014.
[19] BIAN J W,YANG Y,ZHANG H W,et al.Multimedia summarization for social events in microblog stream [J].IEEE Tran-sactions on Multimedia,2015,17(2):216-228.
[20] RUDRA K,GHOSH S,GANGULY N,et al.Extracting Situational Information from Microblogs during Disaster Events:a Classification-Summarization Approach [C]∥Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.ACM,2015:583-592.
[21] MELADIANOS P,NIKOLENTZOS G,ROUSSEAU F,et al.Degeneracy-based real-time sub-event detection in twitter stream[C]∥Ninth International AAAI Conference on Web and Social Media.2015:248-257.
[22] XU J J,LU T C.Seeing the Big Picture from Microblogs:Harnessing Social Signals for Visual Event Summarization[C]∥Proceedings of the 20th International Conference on Intelligent User Interfaces.ACM,2015:62-66.
[23] NICHOLS J,MAHMUD J,DREWS C.Summarizing sporting events using twitter[C]∥Proceedings of the 2012 ACM International Conference on Intelligent User Interfaces.ACM,2012:189-198.
[24] YAN R,WAN X J,LAPATA M,et al.Visualizing timelines:evo-lutionary summarization via iterative reinforcement between text and image streams[C]∥Proceedings of the 21st ACM International Conference on Information and Knowledge Management.ACM,2012:275-284.
[25] HUANG L F,HUANG L E.Optimized Event Storyline Generation based on Mixture-Event-Aspect Model[C]∥EMNLP.2013:726-735.
[26] CHAKRABARTI D,PUNERA K.Event Summarization Using Tweets[C]∥ICWSM.Spain,July 2011:66-73.
[27] CHANG Y,WANG X H,MEI Q Z,et al.Towards Twitter context summarization with user influence models [C]∥Procee-dings of the Sixth ACM International Conference on Web Search and Data Mining.ACM,2013:527-536.
[28] WANG D D,LI T,OGIHARA M.Generating Pictorial Storylines Via Minimum-Weight Connected Dominating Set Approximation in Multi-View Graphs[C]∥AAAI.2012.
[29] LEE P,LAKSHMANAN L V S,MILIOS E.CAST:A Context-Aware Story-Teller for Streaming Social Content[C]∥Procee-dings of the 23rd ACM International Conference on Conference on Information and Knowledge Management.ACM,2014:789-798.
[30] LIN C,LIN C,LI J X,et al.Generating event storylines from microblogs[C]∥Proceedings of the 21st ACM International Conference on Information and Knowledge Management.ACM,2012:175-184.
[31] ZHOU W B,SHEN C,LI T,et al.Generating textual storyline to improve situation awareness in disaster management [C]∥2014 IEEE 15th International Conference on Information Reuse and Integration (IRI).IEEE,2014:585-592.
[32] MCPARLANE P J,MCMINN A J,JOSE J M.Picture thescene:Visually Summarising Social Media Events [C]∥Proceedings of the 23rd ACM International Conference on Confe-rence on Information and Knowledge Management.ACM,2014:1459-1468.
[33] SCHINAS M,PAPADOPOULOS S,K OMPATSIARIS Y,et al.MGraph:multimodal event summarization in social media using topic models and graph-based ranking [J].International Journal of Multimedia Information Retrieval,2016,5(1):51-69.
[34] LYNCH C,ARYAFAR K,ATTENBERG J.Images Don’t Lie:Transferring Deep Visual Semantic Features to Large-Scale Multimodal Learning to Rank[J].arXiv preprint arXiv:1511.06746,2015.
[35] ZHANG J F,GUO B,HAN Q,et al.CrowdStory:multi-layered event storyline generation with mobile crowdsourced data[C]∥Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing:Adjunct.ACM,2016:237-240.
[36] 张佳凡,郭斌,路新江,等.基于移动群智数据的城市热点事件感知方法[J].计算机科学,2015,42(6A):5-9.
[37] 欧阳逸,郭斌,何萌,等.微博事件感知与脉络呈现系统[J].浙江大学学报(工学版),2016,50(6):1176-1182.

No related articles found!
Full text



[1] LEI Li-hui and WANG Jing. Parallelization of LTL Model Checking Based on Possibility Measure[J]. Computer Science, 2018, 45(4): 71 -75, 88 .
[2] XIA Qing-xun and ZHUANG Yi. Remote Attestation Mechanism Based on Locality Principle[J]. Computer Science, 2018, 45(4): 148 -151, 162 .
[3] LI Bai-shen, LI Ling-zhi, SUN Yong and ZHU Yan-qin. Intranet Defense Algorithm Based on Pseudo Boosting Decision Tree[J]. Computer Science, 2018, 45(4): 157 -162 .
[4] WANG Huan, ZHANG Yun-feng and ZHANG Yan. Rapid Decision Method for Repairing Sequence Based on CFDs[J]. Computer Science, 2018, 45(3): 311 -316 .
[5] SUN Qi, JIN Yan, HE Kun and XU Ling-xuan. Hybrid Evolutionary Algorithm for Solving Mixed Capacitated General Routing Problem[J]. Computer Science, 2018, 45(4): 76 -82 .
[6] ZHANG Jia-nan and XIAO Ming-yu. Approximation Algorithm for Weighted Mixed Domination Problem[J]. Computer Science, 2018, 45(4): 83 -88 .
[7] WU Jian-hui, HUANG Zhong-xiang, LI Wu, WU Jian-hui, PENG Xin and ZHANG Sheng. Robustness Optimization of Sequence Decision in Urban Road Construction[J]. Computer Science, 2018, 45(4): 89 -93 .
[8] LIU Qin. Study on Data Quality Based on Constraint in Computer Forensics[J]. Computer Science, 2018, 45(4): 169 -172 .
[9] ZHONG Fei and YANG Bin. License Plate Detection Based on Principal Component Analysis Network[J]. Computer Science, 2018, 45(3): 268 -273 .
[10] SHI Wen-jun, WU Ji-gang and LUO Yu-chun. Fast and Efficient Scheduling Algorithms for Mobile Cloud Offloading[J]. Computer Science, 2018, 45(4): 94 -99, 116 .