Computer Science ›› 2020, Vol. 47 ›› Issue (1): 40-50.doi: 10.11896/jsjkx.190400432

• Computer Science Theory • Previous Articles     Next Articles

Uncertainty Principle as Related to Quantum Computation

Renata WONG   

  1. (Department of Computer Science and Technology,Nanjing University,Nanjing 210093,China)1;
    (State Key Laboratory for Novel Software Technology at Nanjing University,Nanjing 210093,China)2
  • Received:2019-04-10 Published:2020-01-19
  • About author:Renata WONG,doctoral student.Her main research interests include quantum computing,protein structure prediction,physics and linguistics.
  • Supported by:
    This work was supported by the National Key R&D Program of China (2019YFA0308700) and Natural Science Foundation of Jiangsu Province (BK20191249).

Abstract: The high expectations regarding the computational potential of quantum computation stem from quantum mechanical features,such as the principle of superposition,the phenomenon of entanglement,the destructive and constructive interference.Besides the presumed advantages of quantum computation over classical computation,there exist impediments that appear to be affecting the former but not the latter.One of them are the two uncertainty principles traditionally ascribed to Werner Heisenberg.The uncertainty principle formulated originally by Heisenberg pertains to the inability of measuring a quantum system with non-quantum instruments without affecting it.This principle is different from the later development postulating an inherent inability of non-commuting observables to be measured precisely.At present state of technological development and within the current formulation and interpretation of quantum mechanics,both versions of the uncertainty affect the speed attainable by a quantum computer.Recently,the two uncertainty principles have received more attention.In his improvement to Heisenberg’s principle,Ozawa took into account both types of uncertainty mentioned above.Furthermore,research into entropic uncertainty has shown that Heisenberg’s uncertainty can be seen as a lower bound of Hirschmann’s uncertainty,thereby indicating that quantum computation may need to consider other types of uncertainties,such as information uncertainty,as well.

Key words: Quantum computing, Uncertainty principle, Uncertainty relations, Entropic uncertainty

CLC Number: 

  • TP3-0
[1]MANIN Y.Вычислимое и невычислимое [S].Советское Радио,1980.
[2]FEYNMAN R.Simulating physics with computers [J].International Journal of Theoretical Physics,1982,21(6/7):467-488.
[3]BENIOFF P A.Quantum mechanical Hamiltonian models of Turing machines [J].Journal of Statistical Physics,1982,29(3):515-546.
[4]DEUTSCH D.Quantum theory,the Church-Turing principle, and the universal quantum Turing machine [J].Proceedings of the Royal Society of London,1985,404(1818):97-117.
[5]SIMON D.On the power of quantum computation [C]∥Foundations of Computer Science.IEEE,1994:116-123.
[6]DEUTSCH D,JOZSA R.Rapid solution of problems by quantum computation [J].Proceedings of the Royal Society of London,1992,439(1907):553-558.
[7]BERNSTEIN E,VAZIRANI U.Quantum complexity theory
[C]∥Proc.25th Annual ACM Symposium on Theory of Computing.ACM,1993:11-20.
[8]SHOR P.Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer [J].SIAM Journal on Scientific and Statistical Computing,1994,26:1484-1509.
[9]BERNSTEIN D,HENINGER N,LOU P,et al.Post-quantum RSA:Report 217/351[R].Cryptology ePrint Archive,2017.
[10]MOORE G.Cramming more components onto integrated circuits [J].Electronics,1965,38(8):114-117.
[11]GREENLAW R,HOOVER H,RUZZO W.Limits to parallel computation:P-completeness theory [M].Oxford University Press,1995.
[12]LADNER R.The circuit value problem is log space complete for P [J].SIGACT News,1975,7(1):18-20.
[13]EINSTEIN A.Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt [J].Annalen der Physik,1905,17:132-148.
[14]VON NEUMANN J.Mathematische Grundlagen der Quantenmechanik [M].Springer,1932.
[15]RANGAN C,BLOCH A M,MONROE C,et al.Control of trapped-ion quantum states with optical pulses [J].Physical Review Letters,2004,92(11):113004.
[16]HUANG G M,TARN T J,CLARK J W.On the controllability of quantum-mechanical systems [J].Journal of Mathematical Physics,1983,24(11):2608- 2618.
[17]LAU H K,POOSER R,SIOPSIS G,et al.Quantum Machine Learning over Infinite Dimensions [J].arXiv:1603.06222.Physical Review Letters,2017(118):080501.
[18]BORN M.Zur Quantenmechanik der Stoβvorgänge [J]. Zeitschrift für Physik,1926,37:863-867.
[19]HEISENBERG W.Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik [J].Zeitschrift für Physik,1927,43(3):172-198.
[20]ROBERTSON H.The uncertainty principle [J].Physical Re- view,1929,34:163-164.
[21]BACH R,POPE D,LIOU S H,et al.Controlled double-slit electron diffraction [J].New Journal of Physics,2013,15:033018.
[22]SCHRÖDINGER E.An undulatory theory of the mechanics of atoms and molecules [J].Physical Review,1926,28(6):1049-1070.
[23]PAULI W.Die allgemeinen Prinzipien der Wellenmechanik
[M]∥Handbuch der Physik (24).Springer,1933.
[24]GARRISON J,WONG J.Canonically conjugate pairs,uncertainty relations,and phase operators [J].Journal of Mathematical Physics,1970,11(8):2242-2249.
[25]POISSON J.Poisson bracket [J].Journal de l’École Polytechnique,1809,8:266.
[26]MANDELSTAM L,TAMM I.The uncertainty relation between energy and time in nonrelativistic quantum mechanics [J].Journal of Physics (USSR),1945,9(4):249-254.
[27]AHARONOV Y,BOHM D.Time in the Quantum Theory and the Uncertainty Relation for Time and Energy [J].Physical Review,1961,122(5):1649-1658.
[28]BRIGGS J S.A derivation of the time-energy uncertainty relation [J].Journal of Physics Conference Series,2008,99:012002.
[29]KLEIN U.What is the limit of quantum theory? [J].American Journal of Physics,2012,80(11):1009.
[30]SEN D,SENGUPTA S.A critique of the classical limit problem of quantum mechanics [J].Foundations of Physics Letters,2006,19:403-412.
[31]SREDNICKI M.Quantum Field Theory [M].Cambridge University Press,2007.
[32]BUNGE M.The turn of the tide [M]∥Quantum theory and reality.Springer,1967.
[33]HEISENBERG W.Die physikalischen Prinzipien der Quantentheorie [M].S.Hirzel,1930.
[34]UFFINK J.The rate of evolution of a quantum state[J].Ameri- can Journal of Physics,1993,61:935.
[35]MARGOLUS N,LEVITIN L B.The maximum speed of dynami- cal evolution [J].Physica D,1998,120:188.
[36]DEFFNER S,CAMPBELL S.Quantum speed limits:from Heisenberg’s uncertainty principle to optimal quantum control [J].Journal of Physics A,2017,50(45):453001.
[37]LEVITIN L B,TOFFOLI Y.Fundamental limit on the rate of quantum dynamics:The unified bound is tight [J].Physical Review Letters,2009,103:160502.
[38]LLOYD S.Ultimate physical limits to computation [J].Nature,2000,406:1047-1054.
[39]COLES R,KANIEWSKI J,WEHNER S.Equivalence of wave-particle duality to entropic uncertainty [J].Nature Communications,2014,5:5814ôarXiv:1403.4687.
[40]COLES R,BERTA M,TOMAMICHEL M,et al.Entropic uncertainty relations and their applications [J].Reviews of Mo-dern Physics,2017,89(1):015002-1.
[41]DüRR S,REMPE G.Can wave-particle duality be based on the uncertainty relation? [J].American Journal of Physics,2000,68:1021-1024.
[42]BUSCH P,SHILLADAY C.Complementarity and uncertainty in Mach-Zehnder interferometry and beyond [J].Physics Reports,2006,435:1-31.
[43]YOUNG T.Bakerian Lecture:Experiments and calculations rela- tive to physical optics [J].Philosophical Transactions of the Royal Society,1804,94:1-16.
[44]ROZEMA L A,DARABI A,MAHLER D H,et al.Violation of Heisenberg’s measurement-disturbance relationship by weak measurements [J].Physical Review Letters,2012,109:100404.
[45]MARGENAU H.Measurements in quantum mechanics [J]. Annals of Physics,1963,23(3):469-485.
[46]POPPER K.Quantum mechanics without “the observer” [M]∥Quantum theory and reality.Springer,1967.
[47]BALLENTINE L E.The statistical interpretation of quantum mechanics [J].Review of Modern Physics,1970,42(4):358-381.
[48]OZAWA M.Uncertainty relations for noise and disturbance in generalized quantum measurements [J].Annals of Physics,2003,311(2):350-416.
[49]OZAWA M.Uncertainty relations for joint measurements of noncommuting observables [J].Physics Letters A,2004,320:367-374.
[50]BAEK S-Y,KANEDA F,OZAWA M,et al.Experimental violation and reformulation of the Heisenberg’s error-disturbance uncertainty relation [R].Scientific Reports 3,2013.
[51]HIRSCHMAN I I.A note on entropy [J].American Journal of Mathematics,1957,79(1):152-156.
[52]COLES P J,BERTA M,TOMAMICHEL M,et al.Entropic uncertainty relations and their applications [J].Review of Modern Physics,2017,89(1):015002.
[53]MAASSEN H,UFFINK J B M.Generalized entropic uncertainty relations [J].Physical review Letters,1988,60(12):1103-1106.
[54]DEUTSCH D.Uncertainty in quantum measurements [J]. Physical Review Letters,1982,50(9):631-633.
[55]BIAłYNICKI-BIRULA I,MYCIELSKI J.Uncertainty relations for information entropy in wave mechanics [J].Communications in Mathematical Physics,1975,44(2):129-132.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Qin. Study on Data Quality Based on Constraint in Computer Forensics[J]. Computer Science, 2018, 45(4): 169 -172 .
[2] LIAO Xing, YUAN Jing-ling and CHEN Min-cheng. Parallel PSO Container Packing Algorithm with Adaptive Weight[J]. Computer Science, 2018, 45(3): 231 -234, 273 .
[3] YANG Yu-qi, ZHANG Guo-an and JIN Xi-long. Dual-cluster-head Routing Protocol Based on Vehicle Density in VANETs[J]. Computer Science, 2018, 45(4): 126 -130 .
[4] SHI Chao, XIE Zai-peng, LIU Han and LV Xin. Optimization of Container Deployment Strategy Based on Stable Matching[J]. Computer Science, 2018, 45(4): 131 -136 .
[5] QU Zhong and ZHAO Cong-mei. Anti-occlusion Adaptive-scale Object Tracking Algorithm[J]. Computer Science, 2018, 45(4): 296 -300 .
[6] DAI Wen-jing, YUAN Jia-bin. Survey on Hidden Subgroup Problem[J]. Computer Science, 2018, 45(6): 1 -8 .
[7] HU Qing-cheng, ZHANG Yong, XING Chun-xiao. K-clique Heuristic Algorithm for Influence Maximization in Social Network[J]. Computer Science, 2018, 45(6): 32 -35 .
[8] WANG Qian, YU Lai-hang, CAO Yan, ZHANG Lei, QIN Jie, YE Hai-qin. Blind Watermarking Algorithm for Digital Image Based on Fibonacci Scrambling in Wavelet Domain[J]. Computer Science, 2018, 45(6): 135 -140 .
[9] ZHANG Wen-ya, XU Hua-zhong and LUO Jie. Moving Objects Detection under Complex Background Based on ViBe[J]. Computer Science, 2017, 44(9): 304 -307 .
[10] ZHAO Xiao-yan, LIU Hong-zhe, YUAN Jia-zheng and YANG Shao-peng. Advances in Image Reranking[J]. Computer Science, 2018, 45(5): 15 -23 .