计算机科学 ›› 2014, Vol. 41 ›› Issue (10): 67-71.doi: 10.11896/j.issn.1002-137X.2014.10.015

• 2013’和谐人机环境联合学术会议 • 上一篇    下一篇

LSPSA:基于局部结构保持的共享子空间分析

杜琳琳,朱振峰,段红帅,赵耀   

  1. 北京交通大学信息科学研究所 北京100044现代信息科学与网络技术北京市重点实验室 北京100044;北京交通大学信息科学研究所 北京100044现代信息科学与网络技术北京市重点实验室 北京100044;北京交通大学信息科学研究所 北京100044现代信息科学与网络技术北京市重点实验室 北京100044;北京交通大学信息科学研究所 北京100044现代信息科学与网络技术北京市重点实验室 北京100044
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家“973”计划(2012CB316400),国家自然科学资金(61172129),中央高校基本科研业务费专项资金(2012JBZ012),北京市自然科学基金(4112043)和PCSIRT(IRT201206)资助

Local Structure Preserved Shared-subspace Analysis

DU Lin-lin,ZHU Zhen-feng,DUAN Hong-shuai and ZHAO Yao   

  • Online:2018-11-14 Published:2018-11-14

摘要: 多输出正则投影(MORP)算法将输入特征向量和由类标签形成的多输出特征向量经过因子分解方法映射到一个共享子空间,从而建立输入特征与类标签的关联。在MORP的基础上,通过引入图约束,提出了一种基于局部结构保持的共享子空间分析方法(LSPSA),该方法在获取共享信息的同时,保持原始多视角特征空间与共享子空间中的数据具有相近的局部几何结构关系,从而避免多视角数据在共享子空间的过拟合问题。此外,还提出了一种图模型逼近方法,实现了LSPSA的在线扩展,解决了在线获取新测试样本在共享子空间中表征的高复杂度问题。在UCI多特征手写体数据库上的分类及检索实验验证了所提出的算法的有效性。

关键词: 多视角,共享子空间,局部结构保持,图模型,在线扩展

Abstract: With the rapid development of information technology,multi-view data has become increasingly common and how to obtain the shared information from the multi-view data has become one of the hottest research topics in the field of machine learning.As a shared subspace method for multi-view data,Multi-output regularized feature projection (MORP) has been proposed recently to build the correlation of multi-view data in the shared subspace by matrix factorization.Compared with the classical multi-view analysis method CCA,MORP has been proved to be more effective.On the basis of MORP,we proposed a local structure preserved shared-subspace analysis (LSPSA) method by imposing an extra graph constraint.While obtaining the shared information from multi-view data like MORP,the local geometrical structure of data in both shared subspace and original multi-view feature space can be well preserved.Thus,in the obtained shared subspace,the over-fitting problem of multi-view data can be avoided to some extent for MORP model.Meanwhile,we also proposed a graph approximating method to provide an online extension of LSPSA for the problem of out-of-sample.Without loss of performance,the computational complexity of online extension of LSPSA for seeking the representation of out-of-sample in the shared subspace can be reduced greatly,especially with the increasing size of dataset.The final experimental results on UCI multi-view hand-written digit dataset demonstrate that LSPSA achieves much better performance for classification and retrieval tasks.

Key words: Multi-view,Shared-subspace,Local structure preserving,Graph model,Online extension

[1] Estellers V,Gurban M,Thiran J.On Dynamic Stream Weightingfor Audio-Visual Speech Recognition [J].IEEE Transactions on Audio,Speech,and Language Processing,2012,20(4):1145-1157
[2] Li Hao-jie,Wang Xiao-hui,Tang Jin-hui.Combining global and local matching of multiple features for precise item image retrieva[J].ACM/Springer Multimedia System Journal,2013,9(1):37-49
[3] Kalamaras I,Mademlis A,Malassiotis S,et al.novel framework for retrieval and interactive visualization of multimodal data[J].Electronic Letters on Computer Vision and Image Analysis,2013,2(2):28-39
[4] Hotelling H.Relations between two sets of variates[J].Bi-ometrika,1936,28(3/4):321-377
[5] 王惠文.偏最小二乘回归的线性与非线性方法[M].北京:国防工业出版社,1999
[6] Akaho S.A kernel method for canonical correlation analysis[C]∥IMPS 2001 International Meeting of Psychometric Society.Feb.2007
[7] 彭岩,张道强.半监督典型相关分析算法[J].软件学报,2008,9(11):2822-2832
[8] Rosipal R,Trejo L J.Kernel partial least squares regression in reproducing kernel Hilbert space[J].Journal of Machine Learning Research,2001(2):97-123
[9] 王珏,周志华,周傲英.机器学习及其应用[M].北京:清华大学出版社,2006
[10] Sharma A,Kumar A,Daume H III,et al.Generalized MultiviewAnalysis:A Discriminative Latent Space[C]∥IEEE Confe-rence on Computer Vision and Pattern Recognition.2012:2160-2167
[11] Chen Yao-nan,Lin H T.Feature-aware label space dimensionreduction for multi-label classication[C]∥Advances in Neural Information Processing Systems.2012,25:1538-1546
[12] Yu Shi-peng,Yu Kai,Tresp V,et al.Multi-Output regularizedfeature projection[J].IEEE Conference on knowledge and data engineering,2006,8(12):1600-1613
[13] http://www.ics.uci.edu/~mlearn/MLSummary.html
[14] Liu Nan,Zhao Yao,Zhu Zhen-feng,et al.Exploiting Visual-Audio-Textual Characteristics for Automatic TV Commercial Block Detection and Segmentation[J].IEEE Transaction on Multimedia,2011,3(5):961-973

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!