计算机科学 ›› 2014, Vol. 41 ›› Issue (10): 295-299.doi: 10.11896/j.issn.1002-137X.2014.10.062

• 人工智能 • 上一篇    下一篇

基于评论图的虚假产品评论人的检测

王琢,李准,徐野,宋凯   

  1. 沈阳理工大学信息科学与工程学院 沈阳110159;沈阳理工大学信息科学与工程学院 沈阳110159;沈阳理工大学信息科学与工程学院 沈阳110159;沈阳理工大学信息科学与工程学院 沈阳110159
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家自然科学基金(61373159)资助

Detecting Product Review Spammers Based on Review Graphs

WANG Zhuo,LI Zhun,XU Ye and SONG Kai   

  • Online:2018-11-14 Published:2018-11-14

摘要: 由于网络产品评论信息可以极大地影响产品的销售,因此很多产品评论人故意捧抬或诋毁特定产品来达到其目的。Wang G等人利用评论图中店铺、评论、评论人之间的相互关系,通过迭代计算得出评论、评论人和店铺的信誉度,从而发现虚假评论人。针对网络中无店铺的购物环境,提出了用产品替代店铺的新评论图结构,设计了一种逐步淘汰评论人及其评论的ICE算法,它极大地提高了迭代收敛速度。同时通过改进评论、评论人和产品的评分函数,进一步提高了基于评论图方法检测虚假评论人的准确度。实验表明,ICE算法不但收敛速度更快,而且具有更高的准确度。

关键词: 虚假评论,评论图,观点挖掘

Abstract: Online product reviews can significantly affect product sales,resulting in a large number of reviewers who promote and/or demote target products by writing untruthful product reviews.Wang G et al proposed review graphs which reveal the relationships of reviews,reviewers and stores to calculate the reputations of reviews,reviewers and stores by convergent iterative computation,which can capture fake reviewers.To handle the storeless shopping environment,we proposed a new review graph structure by replacing stores with products,and designed a novel Algorithm ICE to fasten the iteration process by eliminating a certain portion of reviewers and reviews during each iteration.Meanwhile,by exploiting new scoring criteria for reviews,reviewers and products,the precision for identifying fake reviewers is also improved.Experiments show that the proposed Algorithm ICE not only performs faster but also more accurately than previous method.

Key words: Fake review,Review graph,Opinion mining

[1] 孙升芸,田萱.产品垃圾评论检测研究综述[J].计算机科学,2011,8(10A):198-201 (下转第305页)(上接第299页)
[2] Jindal N,Liu B.Opinion spam and analysis[C]∥Proceedings of the International Conference on Web Search and Web Data Mi-ning.Palo Alto,Callifornia,USA:ACM,2008:219-230
[3] Ott M,Choi Y,Cardie C,et al.Finding deceptive opinion spam by any stretch of imagination[C]∥Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics.Portland,Oregon:2011:309-319
[4] 李霄,丁晟春.垃圾商品评论信息的识别研究[J].现代图书情报技术,2013,9:63-68
[5] Lim E P,Nguyen V A,Jindal N,et al.Detecting product review spammers using rating behaviors [C]∥Proceedings of the 19th ACM International Conference on Information and Knowledge Management.Toronto,ON,Canada:ACM,2010:930-948
[6] Mukherjee A,Liu B,Wang J,et al.Spotting fake reviewergroups in consumer reviews[C]∥Proceedings of 21st International Conference on World Wide Web.New York,NY,USA:ACM,2012:191-200
[7] Wang G,Xie S,Liu B,et al.Review graph based online store review spammer detection[C]∥Proceedings of the 11th International Conference on Data Mining.Vancouver,BC,Canada:IEEE,2011:1242-1247
[8] Jindal N,Liu B,Lim E P.Finding unusual review patterns using unexpected rules [C]∥Proceedings of the 19th International Conference on Information and Knowledge Management.Toronto,ON,Canada:ACM,2010:1549-1552
[9] 《编程之美》小组.编程之美[M].北京:电子工业出版社,2008:141
[10] 栾建安,苏炳华.多类别多评估人的 Kappa 分析[J].中国卫生统计,1995,12(6):20-22
[11] Landis J R,Koch G G.The measurement of observer agreement for categorical data[J].biometrics,1977,33(1):159-174

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!