计算机科学 ›› 2014, Vol. 41 ›› Issue (11): 273-277.doi: 10.11896/j.issn.1002-137X.2014.11.053

• 人工智能 • 上一篇    下一篇

一种基于区分矩阵的属性组合权重构造方法

叶军,王磊   

  1. 南昌工程学院信息工程学院 南昌330099;南昌工程学院信息工程学院 南昌330099
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家自然基金地区科学基金项目(61363047),国家自然基金(61461032),江西省自然基金(2011ZBAB201005),南昌工程学院青年基金项目(2010KJ019)资助

Approach of Ascertaining Combinatorial Attribute Weight Based on Discernibility Matrix

YE Jun and WANG Lei   

  • Online:2018-11-14 Published:2018-11-14

摘要: 详细分析了以基于Pawlak的属性重要度来构造属性权重的方法存在的问题,给出了一种基于区分矩阵的属性重要度的定义方法,并且得到了该定义方法的一些重要性质。在此基础上提出了一种新的信息系统属性权重构造方法,新方法是以条件属性在整个信息系统中的贡献度来确定属性权重,不仅反映了属性自身区分对象的能力,而且体现了各属性在整个条件属性中的分类能力。通过算例分析表明,该方法得到的属性权重更加贴近事实,因此它能提高属性权重的准确度。

关键词: 粗糙集,区分矩阵,属性重要度,权重

Abstract: The problems existed in the Pawlak attribute importance based method by which the attribute weight is constructed were analyzed in detail firstly,then a discernibility matrix based definition of attribute importance was given.On this basis,a novel approach for constructing the combinatorial attribute weights of information systems was proposed.In this approach,the attribute weights are ascertained according to the condition attribute’s contribution in the whole information system.The proposed approach not only reflects the ability of condition attributes to distinguish the object,but also reflects the classification capability of each attribute in the whole condition attributes.The numerical example demonstrates that the attribute weights gained by the proposed approach are more closer to the facts,so the proposed approach can improve the accuracy of the attribute weights.

Key words: Rough sets,Dscernibility matrix,Attribute significance,Weight

[1] 徐泽水,陈剑.一种基于区间直觉判断矩阵的群决策方法[J].系统工程理论与实践,2007,4(4):126-133
[2] 张霄雁,孟祥福,马宗民,等.基于近似函数依赖的关系数据属性权重评估方法[J].计算机科学,2013,40(2):172-176
[3] 陈晓红,刘益凡.基于区间数群决策矩阵的专家权重确定方法及其算法实现[J].系统工程与电子技术,2010,0(32):2129-2131
[4] Pawlak Z.Rough sets:Theoretical Aspects of Reasoning aboutData[M].Kluwer Academic Boston:Publishers,1991
[5] 曹秀英,梁静国.基于粗集理论的属性权重确定方法[J].中国管理科学,2002,0(5):98-100
[6] 刘盾,胡培.一种基于粗糙集理论的属性权重构造方法[J].系统工程与电子技术,2008,0(8):1231-1233
[7] 王洪凯,姚炳学,胡海清.基于粗集理论的权重确定方法[J].计算机工程与应用,2003,39(36):20-21
[8] 孙斌,王立杰.基于粗糙集理论的权重确定方法研究[J].计算机工程与应用,2006,2(29):216-217
[9] 鲍新中,刘澄.一种基于粗糙集的权重确定方法[J].管理学报,2009,6(6):729-732
[10] 万俊,邢焕革,张晓晖.基于熵理论的多属性群决策专家权重的调整算法[J].控制与决策,2010,6(25):907-910
[11] 吴坚,梁昌勇,李文年.基于主观与客观集成的属性权重求解方法[J].系统工程与电子技术,2007,3(29):384-386
[12] 谭宗凤,徐章艳,王帅.一种改进的粗糙集权重方法[J].计算机工程与应用,2012,48(18):115-118
[13] 朱红灿,陈能华.粗糙集条件信息熵权重确定方法的改进[J].统计与决策,2011,8(322):154-156
[14] Pawlak Z.Rough set theory and its applications todata analysis [J].Cybernetics and Systems:An International Journal,1998,29(1):661-688
[15] 张文修,吴伟志.粗糙集理论与方法[M].北京:科学出版社,2001
[16] 刘清.Rough集及Rough推理[M].北京:科学出版社,2001
[17] 王国胤.Rough集理论与知识获取[M].西安:西安交通大学出版,2001
[18] 苗夺谦,李道国.粗糙集理论、算法与应用[M].北京:清华大学出版社,2008:163-190
[19] Skowron A,Swiniarski R,Synak P.Approximation Spaces and Information Granulation[J].Transaction on Rough Sets III,2005,3400:175-189
[20] Hu X H,Cercone N.Learning in Relational Databases:A Rough Set Approach[J].Computational Intelligence,1995,1(2):323-337
[21] 叶东毅,陈昭炯.一个新的差别矩阵及其求核方法[J].电子学报,2002,0(7):1086-1088

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!