计算机科学 ›› 2014, Vol. 41 ›› Issue (12): 176-178.doi: 10.11896/j.issn.1002-137X.2014.12.038

• 人工智能 • 上一篇    下一篇

一种基于改进的层次聚类的协同过滤用户推荐算法研究

张峻玮,杨洲   

  1. 南京理工大学计算机科学与工程学院 南京210018;南京理工大学计算机科学与工程学院 南京210018
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家自然科学基金项目(71272144)资助

Collaborative Filtering Recommendation Algorithm Based on Improved User Clustering

ZHANG Jun-wei and YANG Zhou   

  • Online:2018-11-14 Published:2018-11-14

摘要: 为了降低组用户推荐的计算时间,提出了一种改进的层次聚类协同过滤用户推荐算法。由于数据的稀疏性,传统的聚类方法在尝试划分用户群时效果不理想。考虑到传统聚类算法的聚类中心不变组内用户间相关度不高等问题,将用户进行聚类,然后按照分类计算出每个用户的推荐结果,在进行聚类的同时充分利用用户间的信息传递来增强组内用户的信息共享,最后将组内所有的用户的推荐结果进行聚合。最后仿真实验表明,本方法能够有效地提高推荐的准确度,比传统的协同过滤算法具有更高的执行效率。

关键词: 推荐系统,协同过滤,层次聚类算法,组推荐,用户推荐

Abstract: In order to reduce the computation time of group user recommendation,this paper proposed an improved k-means clustering collaborative filtering recommendation algorithm.Because of the sparsity of data,the effect of the traditional clustering methods is not ideal when trying to divide user group.This paper took into account that invariant group correlation between users in the clustering center of the traditional K-means algorithm is not high,made the user clustering,then according to the classification calculated recommended results of each user in the cluster,made full use of user information transmission between users to enhance information sharing within the group,and polymerized all user recommendation result of the group.Finally,simulation results show that the method proposed in this paper can effectively improve the accuracy of the recommendation,and it is more effective than traditional collaborative filtering algorithm.

Key words: Recommendation systems,Collaborative filtering,K-means algorithm,Group recommended

[1] Sarwar B,Karypis G,Konstan J.Analysis of recommendation al-gorithms for e-commerce[C]∥Proceedings of the 2nd ACM conference on Electronic commerce.ACM Press,2000:158-167
[2] Pham M C,Cao Y,Klamma R.A Clustering Approach for Collaborative Filtering Recommendation Using Social Network Analysis[J].Journal of Universal Computer Science,2011,17(4):583-604
[3] Harper F M,Sen S,Frankowski D.Supporting social recommendations with activity-balanced clustering.[C]∥Proceedings of the ACM Recommender System conference.ACM,2007:165-168
[4] Massa P,Avesani P.Trust-aware Collaborative Filtering forRecommender Systems[C]∥Proceedings of Federated International Conference on Move to Meaningful Internet.Springer,2004:492-508
[5] Massa P,Avesani P.Trust-aware Recommender Systems[C]∥Proceedings of the 2007 ACM Conference on Recommender systems.ACM,2007:17-24
[6] Chowdhury M,Thomo A.Trust-Based Infinitesimals for En-hanced Collaborative Filtering[C]∥Proceedings of the 15th International Conference on Management of Data.Computer So-ciety of India,2009
[7] Sun D,Zhou T,Liu J.Information filtering based on transferring similarity[J].Physical Review E,2009,80(1):173-177
[8] Gurrin,He C A,Kazai Y A.A Performance Prediction Approach to Enhance Collaborative Filtering Performance[C]∥Procee-dings of European Conference on Information Retrieval.Springer,2010:382-393
[9] Breese J S,Heckerman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering[C]∥Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence.ACM,1998:43-52
[10] McFee B,Barrington L,Lanckriet G.Learning Similarity fromCollaborative Filters[C]∥Proceedings of the International So-ciety of Music Information Retrieval Conference.ACM,2010:345-350
[11] Herlocker J L,Konstan J A,Borchers A.An algorithmic framework for performing collaborative filtering[C]∥Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,1999:230-237
[12] 黄创光,印鉴,汪静,等.不确定近邻的协同过滤推荐算法[J].计算机学报,2010,33(8):1369-1377
[13] 许海玲,吴潇,李晓东,等.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362
[14] 刘建国,周涛,郭强,等.个性化推荐系统评价方法综述 [J].复杂系统与复杂性科学,2009,6(3):1-10
[15] 傅鹤岗,王竹伟.对基于项目的协同过滤推荐系统的改进[J].重庆理工大学学报:自然科学版,2010,24(9):69-74

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!