计算机科学 ›› 2014, Vol. 41 ›› Issue (12): 238-244.doi: 10.11896/j.issn.1002-137X.2014.12.052

• 图形图像与模式识别 • 上一篇    下一篇

低熵图像序列无损压缩

汤颖,刘晓哲,张宏鑫   

  1. 浙江工业大学计算机科学与技术学院 杭州310012;浙江工业大学计算机科学与技术学院 杭州310012;浙江大学CAD&CG国家重点实验室 杭州310058
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家青年科学基金项目:网络环境下的大规模纹理数据压缩传输技术研究(61003265),国家自然科学基金:基于形状文法和多源数据融合的三维建筑高效重构方法研究(61070073),浙江省创新团队子项目:云计算环境下的功能构件管理关键技术研究(2009R50009)资助

Low Entropy Image Sequences Lossless Compression

TANG Ying,LIU Xiao-zhe and ZHANG Hong-xin   

  • Online:2018-11-14 Published:2018-11-14

摘要: 大规模的云渲染技术带来了大量的三维图形渲染数据。为了减小集群渲染产生的图像序列数据的传输以及存储代价,针对渲染图像序列低熵的特点,基于字典编码技术提出了降低数据局部复杂性的无损数据压缩方案。该方案通过数据重排技术来大大提高数据的局部冗余度,从而提高数据无损压缩效率。为了进一步解决大规模图像序列的压缩耗时问题,提出了一种云计算平台上的分布式图像压缩处理方案,充分利用现有云计算中Map/Reduce计算模型实现了分布式编码方案。实验结果证明,对于渲染产生的大规模低熵图像序列,提出的方案能够有效提高编码率并减少编码时间。

关键词: LZ77压缩方法,图像序列,无损数据压缩,云计算

Abstract: A large-scale amount of 3D graphic rendering image data has been brought because of the cloud rendering system.In order to reduce I/O transmission and storage cost of cluster rendered image sequences,this paper presented a lossless compression scheme based on dictionary technology which can get more compression by decreasing local complexity of data.A data rearrangement technology is applied to increase the degree of local redundancy,which can get more dense compression.To further improve the compression performance of a large-scale number of image sequences,the paper proposed a distributed image compression scheme based on the cloud computing infrastructure.The method was realized according to the current Map/Reduce computing model.The experimental results show that the approach proposed in this paper can make the coding process more efficiency.

Key words: LZ77,Image sequence,Losslessdata compression,Cloud computing

[1] Liu W,Gong B,Hu Y.A large-scale rendering system based on hadoop[C]∥International Conference on Pervasive Computing and Applications.Port Elizabeth,2011:470-475
[2] http://render.aliyun.com
[3] Armbrust M,Fox A,Griffit R,et al.Above the clouds:aBerkeley view of cloud compu-ting.Electrical Engineering and Computer SciencesUniversity of California at Berkeley[R].UCB/EEECS-2009-28.Technical Report ,February 2009
[4] Dean J,Ghemawat S.MapReduce:simplified data processing on large clusters[C]∥Operating Systems Design and Implementation.2004:137-150
[5] Dhawan S.A review of image compression and comparison of its algorithms[J].International journal of electronics & communicationtechnology,2011,2:22-26
[6] Weinberger M,Seroussi G,Sapiro G.LOCO-I:a low complexity,context-based,lossless image compression algorithm[C]∥Data Compression Conference.Snowbird,UT,1996:140-149
[7] Wiegand T,Sullivan G,Bjontegaard G,et al.Overview of the H.264/AVC video coding standard[J].IEEE Transactions on Circuits and Systems for Video Technology,2003,3(7):560-576
[8] Graphics and Media Lab Video Group,Computer Science,MSU.Lossless video codecs comparison[R].2007
[9] Milani S.Fast H.264/AVC FRExt intra coding using beliefpropagation[J].IEEE Transactions on Image Processing,2011,0(1):121-131
[10] 杨帆,沈奇威.分布式系统Hadoop平台的视频转码[J].计算机系统应用,2011,0(11):80-85
[11] Ziv J,Lempel A.A universal algorithm for sequential data compression[J].IEEE Transactions on Information Theory,1977,3(3):337-343
[12] Ziv J,Lempel A.Compression of individual sequences via variable rate coding[J].IEEE Transactions on Information Theory,1978,4(5):530-536
[13] RFC 1951.DEFLATE compressed data format specification version 1.3[S]
[14] Burrows M,Wheeler D J.A Block-sorting lossless data compression algorithm[R].Palo Alto,California:digital systems research center,SRC Research Report,May 10,4
[15] Welch T.A technique for high-performance data compression[J].IEEE Computer,1984,17(6):8-19 (下转第259页)(上接第244页)
[16] Williams R.An extremely fast ZIV-Lempel data compression algorithm[C]∥Data Compression Conference.Snowbird,UT,1991:362-371
[17] Gunderson S.Snappy.http://code.google.com/p/snap-py/
[18] Reinhold L M.QuickLZ.http://www.quicklz.com
[19] Hidayat A.Fastlz.http://www.fastlz.org
[20] Lenhardt R,Alakuijala J.Gipfeli-high speed compression algorithm[C]∥Data Compression Conference.Snowbird,UT,2012:109-118
[21] YannCollet.LZ4.https://code.Google.com/p/lz4/
[22] Sayood K.Introduction to Data Compression(Third Edition)[M].Singapore:Elsevier,2009
[23] Ghemawat S,Gobioff H,et al.The google file system[C]∥ACM symposium on operating systems principles.New York:USA,2003:29-43
[24] Mell P,Grance T.The NIST Definition of Cloud Computing[J].Communications of the ACM,2010,3(6):50-57
[25] Pereira R,Azambuja M,Breitman K,et al.An architecture fordistribute high performance video processing[C]∥IEEE International Conference on Cloud Computing.Miami,FL,2010:482-489
[26] http://hadoop.apache.org/

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!