计算机科学 ›› 2016, Vol. 43 ›› Issue (1): 81-84.doi: 10.11896/j.issn.1002-137X.2016.01.019

• 第五届全国智能信息处理学术会议 • 上一篇    下一篇

摸石头过河算法与分布估计混合算法

高尚,曹存根   

  1. 江苏科技大学计算机科学与工程学院 镇江212003,中国科学院计算技术研究所智能信息处理重点实验室 北京100190
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受人工智能四川省重点实验室开放基金(2012RYJ04),中科院智能信息处理重点实验室开放课题(IIP2013-1)资助

Solving Continuous Optimization Problem by Hybrid Wading across Stream Algorithm-Estimation Distribution Algorithm

GAO Shang and CAO Cun-gen   

  • Online:2018-12-01 Published:2018-12-01

摘要: 依据摸石头过河算法与分布估计算法的优点,提出了一种混合算法。该算法以一个解为起点,向该起点附近邻域随机搜索若干个解,找出这些解中最好的一个解;并挑选部分优秀个体的中心与最好解进行交叉操作,以此解作为下次迭代的结果,然后以此点为起点,再向附近邻域随机搜索若干个解,以此类推。对几个经典测试函数进行实验的结果表明,利用摸石头过河与分布估计算法能够极大地提高收敛速度和精度。

关键词: 随机优化算法,连续空间优化,摸石头过河,分布估计算法

Abstract: According to advantage of wading across the stream and estimation distribution algorithm,a hybrid wading across stream algorithm-estimation distribution algorithm (Hybrid WSA-EDA) was put forward.The Hybrid WSA-EDA acts a solution as a start point,then searches several random solutions near the start point,and finds out the best solution of these solutions.The center of some selection of good individual is crossed with the best solution and this solution is taken as the next start point,and then several random solutions near this start point are searched,and so on.For solving continuous optimization problem,the improved wading across stream algorithm shrink the search space gradually.The experiment results of some classic benchmark functions show that the Hybrid WSA-EDA extraordinarily improves the convergence velocity and precision.

Key words: Random optimization algorithm,Continuous space optimization,Wading across stream algorithm,Estimation distribution algorithm

[1] Antamoshkin A N,Kazakovtsev L A.Random search algorithm for the p-median problem[J].Informatica (Slovenia),2013,37(3):267-278
[2] Ge Zhen-zhen,Zhou Jun,Lin Peng.The Control-Configured Optimization Method for Hypersonic Vehicles Using the Improved Simulated Annealing Algorithm[J].Journal of Astronautics,2013,4(11):1427-1433(in Chinese)葛振振,周军,林鹏.采用改进模拟退火算法的高速飞行器随控总体优化方法[J].宇航学报,2013,4(11):1427-1433
[3] Li Yuan,Jiang Jiang,Zhang Min-xuan,et al.Automatic Word-Length Determination Tool Based on Simulated Annealing Algorithm[J].Journal of Shanghai Jiaotong University,2013,7(1):76-80,5(in Chinese)黎渊,蒋江,张民选,等.基于模拟退火算法的浮点转定点自动位宽优化工具[J].上海交通大学学报,2013,7(1):76-80,5
[4] Zhang Qi,Ma Jia-cheng,Xie Wei,et al.Improved Ant Colony Algorithm-Based Path Planning for Mobile Robot[J].Journal of Northeastern University(Natural Science),2013,4(11):1521-1524(in Chinese)张琦,马家辰,谢玮,等.基于改进蚁群算法的移动机器人路径规划[J].东北大学学报(自然科学版),2013,4(11):1521-1524
[5] Eberhart R C,Kennedy J.A new optimizer using particlesswarm theory[C]∥Proc Sixth International Symposium on Micro Machine and Human Science.Nagoya,Japan,1995:39-43
[6] Shi Y H,Eberhart R C.A modified particle swarm optimizer[C]∥IEEE International Conference on Evolutionary Computation.Anchorage,Alaska,1998:69-73
[7] Kennedy J,Eberhart R.Particle swarm optimization[C]∥Proc IEEE International Conference on Neural Networks.Perth,1995:1942-1948
[8] Guo Tong,Lan Ju-long,Li Yu-feng,et al.Adaptive fractional-order Darwinian particle swarm optimization algorithm[J].Journal on Communications,2014,5(4):130-140(in Chinese)郭通,兰巨龙,李玉峰,等.自适应的分数阶达尔文粒子群优化算法[J].通信学报,2014,5(4):130-140
[9] Hu Wang,Yen G G,Zhang Xin.Multiobjective Particle Swarm Optimization Based on Pareto Entropy[J].Journal of Software,2014,5(5):1025-1050(in Chinese)胡旺,Yen G G,张鑫.基于Pareto熵的多目标粒子群优化算法[J].软件学报,2014,5(5):1025-1050
[10] Gao Shang,Yang Jing-yu.Swarm intelligence algorithm and its application [M].Beijing:China Water and Power Press,2006:112-117(in Chinese)高尚,杨静宇.群智能算法及其应用[M].北京:中国水利水电出版社,2006:112-117
[11] Gao Shang,Yang Jing-yu.Research on Chaos Particle Swarm Optimization Algorithm[J].Pattern Recognition and Artificial Intelligence,2006,19(2):266-270(in Chinese)高尚,杨静宇.混沌粒子群优化算法研究[J].模式识别与人工智能,2006,19(2):266-270
[12] Gao Shang,Yu Hua-long,Qiu Ling,et al.The wading acrossstream algorithm[J].International Journal of Computers and Applications,2014,6(4):127-132

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[2] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[3] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[4] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[5] 钟菲,杨斌. 基于主成分分析网络的车牌检测方法[J]. 计算机科学, 2018, 45(3): 268 -273 .
[6] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99, 116 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111, 142 .
[8] 王振武,吕小华,韩晓辉. 基于四叉树分割的地形LOD技术综述[J]. 计算机科学, 2018, 45(4): 34 -45 .
[9] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[10] 李珊,饶文碧. 基于视频的矿井中人体运动区域检测[J]. 计算机科学, 2018, 45(4): 291 -295 .