计算机科学 ›› 2016, Vol. 43 ›› Issue (2): 47-50, 77.doi: 10.11896/j.issn.1002-137X.2016.02.010

• 2015年中国计算机学会人工智能会议 • 上一篇    下一篇

基于CPU/GPU异构模式的高光谱遥感影像数据处理研究与实现

汤媛媛,周海芳,方民权,申小龙   

  1. 国防科学技术大学计算机学院 长沙410073;中国人民武装警察部队黄金地质研究所 廊坊065000,国防科学技术大学计算机学院 长沙410073,国防科学技术大学计算机学院 长沙410073,国防科学技术大学计算机学院 长沙410073
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金项目(61272146)资助

Hyperspectral Remote Sensing Image Data Processing Research and Realization Based on CPU/GPU Heterogeneous Model

TANG Yuan-yuan, ZHOU Hai-fang, FANG Min-quan and SHEN Xiao-long   

  • Online:2018-12-01 Published:2018-12-01

摘要: 近年来,基于GPU的新型异构高性能计算模式的蓬勃发展为众多领域应用提供了良好的发展机遇,国内外遥感专家开始引入高性能异构计算来解决高光谱遥感影像高维空间特点所带来的数据计算量大、实时处理难等问题。在此简要介绍了高光谱遥感和CPU/GPU异构计算模式,总结了近几年国内外基于CPU/GPU异构模式的高光谱遥感数据处理研究现状和问题;并面向共享存储型小型桌面超级计算机,基于CPU/GPU异构模式实现了高光谱遥感影像MNF降维的并行化,通过与串行程序和共享存储的OpenMP同构模式对比,验证了异构模式在高光谱遥感处理领域的发展潜力。

关键词: 高光谱遥感,CPU/GPU,OpenMP,MNF

Abstract: In recent years,the development of new high-performance heterogeneous computing based on GPU provides good oppotunities in many application areas.Domestic and foreign remote sensing experts have started to introduce it to solve the issues like computation intensive and difficult real-time processing caused by high-dimensional space features of hyperspectral image.In this brief introduction to hyperspectral remote sensing and CPU/GPU heterogeneous computing model,we summarized hyperspectral data processing status and problems based on CPU/GPU heterogeneous pattern in recent years,and for small desktop supercomputer with shared storage,realized parallelization of hyperspectral imaging MNF dimensionality reduction on CPU/GPU heterogeneous model,and verified the development potential of heterogeneous patterns in the field of hyperspectral remote sensing processing by contrasting with the sequential program and OpenMP.

Key words: Hyperspectral remote sensing,CPU/GPU,OpenMP,MNF

[1] Su Hong-jun,Sheng Ye-hua,Yang He,et al.Orthogonal Projection Divergence-Based Hyperspectral Band Selection[J].Spectroscopy and Spectral Analysis,2011,1(5):1309-1313(in Chinese) 苏红军,盛业华,Yang He,等.基于正交投影散度的高光谱遥感波段选择算法[J].光谱与光谱学分析,2011,31(5):1309-1313
[2] Tang Yuan-yuan,Zhou Hai-fang,Fang Min-quan,et al.Hyperspectral Remote Sensing Image Data Processing on GPU[J].Information Security and Technology,2015,6(4):148-152(in Chinese) 汤媛媛,周海芳,方民权,等.基于GPU的高光谱遥感影像数据处理[J].信息安全与技术,2015,6(4):148-152
[3] Ju Tao,Zhu Zheng-dong,Dong Xiao-she.The Feature,Programming Model and Performance Optimization Strategy of Heterogeneous Many-Core System:A Review[J].Acta Electronica Sini-ca,2015,3(1):111-119(in Chinese) 巨涛,朱正东,董小社.异构众核系统及其编程模型与性能优化技术研究综述[J].电子学报,2015,43(1):111-119
[4] 张舒,褚艳利.GPU高性能运算之CUDA[M].北京:中国水利水电出版社,2009
[5] Setoain J,Tenllado C,Prieto M,et al.Parallel hyperspectral ima-ge processing on commodity graphics hardware[C]∥2006 International Conference on Parallel Processing Workshops.2006:465-472
[6] Green A A,Switzer B H,et al.A transformatioll for orderingmultispectral data in terms of image quality with Implications for noise remaval[J].IEEE Transactions on Geoscience and Remote Sensing,1988,6(1):65-74

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75, 88 .
[2] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[3] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[4] 王欢,张云峰,张艳. 一种基于CFDs规则的修复序列快速判定方法[J]. 计算机科学, 2018, 45(3): 311 -316 .
[5] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[6] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[7] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[8] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[9] 钟菲,杨斌. 基于主成分分析网络的车牌检测方法[J]. 计算机科学, 2018, 45(3): 268 -273 .
[10] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99, 116 .