计算机科学 ›› 2016, Vol. 43 ›› Issue (3): 220-224.doi: 10.11896/j.issn.1002-137X.2016.03.040

• 软件与数据库技术 • 上一篇    下一篇

HMSST+:基于分布式内存数据库的HMSST算法优化

董书暕,汪璟玢,陈远   

  1. 福州大学数学与计算机科学学院 福州350108,福州大学数学与计算机科学学院 福州350108,福州大学数学与计算机科学学院 福州350108
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受福州大学科技发展基金资助

HMSST+:HMSST Algorithm Optimization Based on Distributed Memory Database

DONG Shu-jian, WANG Jing-bin and CHEN Yuan   

  • Online:2018-12-01 Published:2018-12-01

摘要: 为了解决HMSST(HashMapSelectivityStrategyTree)算法在集中式环境下受限于有限内存的问题,提出了一种新的分布式SPARQL查询优化算法HMSST+。该算法基于Redis提出了一种分布式存储方案,通过平行扩展存储节点和分布式调度,使得海量RDF数据的查询得以在分布集群的内存中实现。采用LUBM1000所大学的测试数据集对查询策略进行了实验,结果表明提出的方法与HMSST算法相比具有更好的扩展能力,与现有的分布式查询方案相比也具有更好的查询效率。

关键词: RDF,Redis,分布式存储,内存数据库,SPARQL

Abstract: To solve the bottleneck of HMSST(HashMapSelectivityStrategyTree) algorithm which is limited to the memory in a centralized environment,this paper proposed a novel distributed SPARQL optimized query algorithm named HMSST+.This algorithm presents a distributed storage solution based on the Redis(Remote Dictionary Ser-ver),and realizes the query of massive RDF data in the memory of distributed cluster by a parallel expansion of storage nodes and distributed scheduling .The method was tested on LUBM Benchmark and it worked well when the number of universities reaches 1000.The result shows that the method has better scalability than the HMSST algorithm and higher query efficiency than the existing query schemes.

Key words: RDF,Redis,Distributed storage,Memory database,SPARQL

[1] He Shao-peng,Li Jian-hui,Shen Zhi-hong,et al.Overview of the Storage Technology for Large-scale RDF Data[J].Network New Media,2013(1):8-16(in Chinese) 何少鹏,黎建辉,沈志宏,等.大规模的RDF数据存储技术综述[J].网络新媒体技术,2013(1):8-16
[2] Harris S,Lamb N,Ltd N S G.4store:The Design and Imple-mentation of a Clustered RDF Store [C]∥The 5th International Workshop on Scalable Semantic Web Knowledge Base Systems.2009
[3] Neumann T,Weikum G.The RDF-3X engine for scalable mana-gement of RDF data[J].The VLDB Journal,2010,9:91-113
[4] Wang Yan,Tian Cui-hua,Zhu Shun-zhi,et al.RDF Data Index Method Based on Association of SPARQL Query Twis[J].Journal of Xiamen University(Natural Science),2014,3(3):322-329(in Chinese) 王琰,田翠华,朱顺痣,等.基于SPARQL查询小枝关联的RDF数据索引方案[J].厦门大学学报(自然科学版),2014,3(3):322-329
[5] Weiss C,Karras P,Bemstein A.Hexastore:sextuple indexingfor semantic web data anagementl [C]∥Proceedings of the 34rd International Conference on Very Large Data Bases.New York:ACM,2008:1008-1019
[6] Dong Shu-jian,Wang Jing-bin.HMSST:An efficient algorithm for SPARQL query[J].Computer Science,2014,1(S2):323-326,336(in Chinese) 董书暕,汪璟玢.HMSST:一种高效的SPARQL查询优化算法[J].计算机科学,2014,1(S2):323-326,336
[7] Zeng Chao-yu,Li Jin-xiang.Redis application in cache system[J].Microcomputer&Its Applications,2013,2:11-13(in Chinese) 曾超宇,李金香.Redis在高速缓存系统中的应用[J].微型机与应用,2013,2:11-13
[8] Gao X,Fang X.High-Performance Distributed Cache Architecture Based on Redis[C]∥Proceedings of the 9th International Symposium on Linear Drives for Industry Applications,Volume 1.Springer Berlin Heidelberg,2014:105-111
[9] Guo Y,Pan Z,Heflin J.LUBM:A benchmark for OWL know-ledge base systems[J].Web Semantics:Science,Services and Agents on the World Wide Web,2005,3(2):158-182
[10] Huang H,Liu C.Selectivity estimation for SPARQL graph pattern[C]∥Proceedings of the 19th international conference on World Wide Web.ACM,2010:1115-1116
[11] Liu L,Yin J,Gao L.Efficient Social Network Data Query Processing on MapReduce[C]∥Proc of the 5th ACM workshop.New York:ACM,2013:27-32
[12] Kim H S,Ravindra P,Anyanwu K.From SPARQL to MapReduce:The journey using a nested TripleGroup algebra[J].Proc.of the VLDB Endowment,2011,4(12):1426-1429

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!