计算机科学 ›› 2016, Vol. 43 ›› Issue (3): 309-312.doi: 10.11896/j.issn.1002-137X.2016.03.058

• 图形图像与模式识别 • 上一篇    下一篇

一种改进粒子群优化算法的Otsu图像阈值分割方法

刘桂红,赵亮,孙劲光,王星   

  1. 辽宁工程技术大学电子与信息工程学院 葫芦岛125105,辽宁工程技术大学研究生学院 葫芦岛125105,辽宁工程技术大学电子与信息工程学院 葫芦岛125105,辽宁工程技术大学电子与信息工程学院 葫芦岛125105
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受青年科学基金项目(61402212),语义Web模糊规则互换与推理关键技术研究资助

Otsu Image Threshold Segmentation Method Based on Improved Particle Swarm Optimization

LIU Gui-hong, ZHAO Liang, SUN Jin-guang and WANG Xing   

  • Online:2018-12-01 Published:2018-12-01

摘要: 阈值法分割图像时只利用图像的灰度信息,具有直观、实现简单的特点。针对传统的粒子群优化算法(Particle Swarm Optimization,PSO)分割图像易陷入局部最优的缺点,提出一种基于改进粒子群优化算法的Otsu图像阈值分割方法。以Otsu算法的类间方差作为适应度函数,在每次迭代中选取适应度较好的粒子同时加入新的粒子,以提高粒子多样性。实验表明,与Otsu算法和PSO算法相比,改进的粒子群优化算法不仅加快了收敛速度和运算速度,而且提高了图像分割的准确率。

关键词: 图像分割,Otsu,类间方差,粒子群优化,适应度函数

Abstract: The thresholding method only needs the gray information to spilt image,which is more intuitive and much easier to be implemented.Aiming at the problem that the traditional PSO algorithm used for image segmentation is easy to fall into local optimum,this paper proposed an Otsu image threshold segmentation method based on the improved PSO.We took the inter-class variance of Otsu as the fitness function,and selected the particles with better fitness and added new particles to increase the diversity of the particles.The experimental results show that,compared with Otsu methods and PSO algorithm,the improved PSO accelerates the speed of convergence and computation,and improves the accuracy of image segmentation.

Key words: Image segmentation,Otsu,Inter-class variance,Particle swarm optimization,Fitness function

[1] Long Jian-wu,Shen Xuan-jing,Chen Hai-peng.Adaptive mini-mum error thresholding algorithm[J].Acta Automatica Sinica,2012,38(7):1134-1144(in Chinese) 龙建武,申铉京,陈海鹏.自适应最小误差阈值分割算法[J].自动化学报,2012,38(7):1134-1144
[2] Wang Hui,Wang Lai-sheng,Zhong Ping.Level set image segmentation based on scale transform of edge detection function[J].Computer Engineering,2009,35(24):202-204(in Chinese)王辉,王来生,钟萍.基于边缘检测函数尺度变换的水平集图像分割[J].计算机工程,2009,35(24):202-204
[3] Zhang Fa-cun,Zhao Xiao-hong,Wang Zhong,et al.A data parallel algorithm on region growing image segmentation[J].Computer Engineering,2004,30(17):14-16(in Chinese) 张发存,赵晓红,王忠,等.区域生长法图像分割的数据并行方法研究[J].计算机工程,2004,30(17):14-16
[4] Gao Li,Yang Shu-yuan,Li Hai-qiang.New unsupervised image segmentation via marker-based watershed[J].Journal of Image and Graphics,2007,12(6):1025-1032(in Chinese) 高丽,杨树元,李海强.一种基于标记的分水岭图像分割新算法[J].中国图象图形学报,2007,12(6):1025-1032
[5] Han Si-qi,Wang Lei.A survey of thresholding methods for image segmentation[J].Systems Engineering and Electronics,2002,24(6):91-94(in Chinese) 韩思奇,王蕾.图像分割的阈值法综述[J].系统工程与电子技术,2002,24(6):91-94
[6] Zhang Chao,Zhang Jia-shu,Jia Dong-li.Image thresholding basedon Chaos genetic algorithm[J].Computer Engineering and Applications,2006,42(2):45-47(in Chinese)张超,张家树,贾东立.基于混沌遗传算法的图像阈值分割[J].计算机工程与应用,2006,42(2):45-47
[7] Xing Xu-dong,Zhou Xu,Mi Jian.Image segmentation based on improved ant colony algorithm[J].Radio Communication Technology.2013,39(6):71-73(in Chinese) 邢旭东,周旭,米健.基于改进的人工蚁群的图像分割算法[J].无线电通信技术,2013,39(6):71-73
[8] Zhang Lei,Gao Shang.An image segmentation method based on elite theory-improved particle swarm optimization[J].Compu-ter applications and Software,2009,26(12):89-92(in Chinese) 张磊,高尚.基于精英粒子群优化算法的图像分割方法[J].计算机应用与软件,2009,26(12):89-92
[9] Zhou Chang-ying.Research on image segmentation technology based on improved fuzzy BP neural network[J].Computer Simu-lation,2011,28(4):287-290(in Chinese) 周长英.基于改进的模糊BP神经网络图像分割算法[J].计算机仿真,2011,28(4):287-290
[10] Hsieh Sheng-ta,Sun Tsung-ying,Liu Chan-cheng,et al.Efficient population utilization strategy for particle swarm optimizer[J].IEEE Transactions on Systems,Man,and Cybernetics,2009,39(2):444-456
[11] Zhan Zhi-Hui,Zhang Jun,Li Yun,et al.Adaptive particle swarm optimization[J].IEEE Transactions on systems,Man,and Cybernetics,2009,39(6):1362-1381
[12] Li Li,Xue Bing,Niu Ben,et al.The novel non-linear strategy of inertia weight in particle swarm optimization [C]∥Proceedings of the Congress on Bio-Inspired Computing.2009:1-5

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!