计算机科学 ›› 2016, Vol. 43 ›› Issue (8): 262-266.doi: 10.11896/j.issn.1002-137X.2016.08.053

• 人工智能 • 上一篇    下一篇

基于直觉模糊熵的粒子群多目标优化

苏丁为,周创明,王毅   

  1. 空军工程大学防空反导学院 西安710051,空军工程大学防空反导学院 西安710051,空军工程大学防空反导学院 西安710051
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金(61402517),中国博士后基金(2013M542331),陕西省自然科学基金(2013JQ8035)资助

Particle Swarm Algorithm for Multi-objective Optimization Based on Intuitionistic Fuzzy Entropy

SU Ding-wei, ZHOU Chuang-ming and WANG Yi   

  • Online:2018-12-01 Published:2018-12-01

摘要: 针对现有多目标算法存在的收敛性不强、分散性不高等问题,提出了一种基于直觉模糊熵的粒子群多目标优化算法(IFEMOPSO)。首先,计算出种群的直觉模糊熵(IFE),作为衡量种群在多目标空间下多样性的测度;其次,设计基于IFE的惯性权重动态变化、外部档案调用以及变异操作等3种增强算法探索力度的策略,建立了直觉模糊多目标规划模型,有效地提高了群体进化过程中的多样性,防止了算法陷入局部收敛;最后,仿真结果表明,所提算法很好地提高了所得非劣解集的收敛性和分散性,有效地解决了多目标优化问题。

关键词: 直觉模糊熵,粒子群算法,多样性,多目标优化问题

Abstract: A particle swarm algorithm for multi-objective optimization problems based on intuitionistic fuzzy entropy was proposed to overcome the deficiency that the performance of algorithm’s convergence and distribution is not high.Firstly,the algorithm uses a metric based on intuitionistic fuzzy entropy to measure the diversity of the population in the case of multi-objective space.Then,three strategies,namely dynamic changes of inertia weight,use of the external archive and mutation operator mechanism based on intuitionistic fuzzy entropy,was designed and intuitionistic fuzzy multi-objective programming model was built to enhance the extent of the algorithm’s exploration,increasing the diversity of the evolving population and prevent premature convergence.At last,results of simulation indicate that the proposed algorithm has good performance of convergence and distribution,and it is useful for dealing with multi-objective optimization problems.

Key words: Intuitionistic fuzzy entropy,Particle swarm optimization,Diversity,Multi-objective optimization

[1] Schaffer J D.Multiple objective optimization with vector evaluated genetic algorithms[C]∥Proc.of the 1st IEEE International Conference on Genetic Algorithms.1985:93-100
[2] Deb K,Pratap A,Agarwal S,et al.A fast and elitist multi-objective genetic algorithm:NSGA-II [J].IEEE Trans.on Evolutiona-ry Computation,2002,6(2):182-197
[3] Kennedy J,Eberhart R C.Particle swarm optimization[C]∥Proc.of IEEE International Conference on Neural Networks.1995:1942-1948
[4] Coello C A C,Lechuga M S.MOPSO:A proposal for multiple objective particle swarm optimization[C]∥Proc.IEEE Int.Conf.on Evolutionary Computation.Piscataway:IEEE Service Center,2002,2:1051-1056
[5] Coello C A C,Pulido G T,Lechuga M S.Handling multiple objectives with particle swarm optimization[J].IEEE Trans.on Evolutionary Computation,2004,8(3):256-279
[6] Wang Hui,Qian Feng.Improved PSO-based multi-objective optimization by crowding with mutation and particle swarm optimization dynamic changing[J].Control and Decision,2008,23(11):1238-1242(in Chinese) 王辉,钱峰.基于拥挤度与变异的动态微粒群多目标优化算法[J].控制与决策,2008,23(11):1238-1242
[7] Zadeh L A.Fuzzy sets[J].Information and Control,1965,8(3):338-356
[8] Burillo P,Bustice H.Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets[J].Fuzzy Sets and Systems,1996,78(3):305-316
[9] Wang Yi,Lei Ying-jie.A technique for constructing intuitionistic fuzzy entropy[J].Control and Decision,2007,12(22):1390-1394(in Chinese) 王毅,雷英杰.一种直觉模糊熵的构造方法[J].控制与决策,2007,12(22):1390-1394
[10] Wang Yu-zhe,Lei Ying-jie,Zhou Lin,et al.Intuitionistic fuzzy discrete particle swarm algorithm[J].Control and Decision,2012,27(11):1735-1740(in Chinese) 汪禹喆,雷英杰,周林,等.直觉模糊离散粒子群算法[J].控制与决策,2012,27(11):1735-1740
[11] Zhang Kun,Wang Xue.Evaluating and sequencing of air target threat based on IFE and dynamic intuitionistic fuzzy sets[J].Systems Engineering and Electronics,2014,36(4):697-701(in Chinese) 张堃,王雪.基于IFE动态直觉模糊法的空战目标威胁评估[J].系统工程与电子技术,2014,36(4):697-701
[12] Zitzler E,Deb K,Thiele L.Comparison of multi-objective evolutionary algorithms:Empirical results[J].Evolutionary Computation,2000,8(2):173-195
[13] Van Veldhuizen D A,Lamont G B.Multi-objective evolutionary algorithm research:A history and analysis[R].Ohio:Air Force Institute of Technology,1998
[14] Schott J.Fault tolerant design using single and multicriteria genetic algorithm optimization[D].Cambridge:Massachusetts Institute of Technology,1995

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!