计算机科学 ›› 2016, Vol. 43 ›› Issue (Z11): 108-112.doi: 10.11896/j.issn.1002-137X.2016.11A.023

• 智能计算 • 上一篇    下一篇

课程本体自动构建技术研究

童名文,牛琳,杨琳,邹军华,上超望   

  1. 华中师范大学教育信息技术学院 武汉430079,华中师范大学教育信息技术学院 武汉430079,华中师范大学教育信息技术学院 武汉430079,湖北大学教育学院 武汉430415,华中师范大学教育信息技术学院 武汉430079
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受教育部人文社科基金资助

Research on Technique of Course Ontology Automatically Constructing

TONG Ming-wen, NIU Lin, YANG Lin, ZOU Jun-hua and SHANG Chao-wang   

  • Online:2018-12-01 Published:2018-12-01

摘要: 课程本体是课程知识组织的一种重要技术,在智能学习系统中得到广泛应用。针对人工建立课程本体依赖专家经验和效率较低等问题,提出课程本体自动构建技术。该技术以丰富的Web课程资源为数据源,集成网络爬虫、中文分词和关联规则挖掘等技术,实现课程本体自动构建。实验结果表明,该技术建立的课程本体不仅具有较好的质量,而且执行效率较高。

关键词: 课程本体,本体自动构建,中文分词,关联规则挖掘,网络爬虫

Abstract: The course ontology used in the artificial intelligent learning system widely is one of the important technologies for knowledge organization in courses.To solve the problems of manual technique to construct the course ontology,a novel technique was proposed to construct the course ontology automatically.The technique employes some techniques such as Web spider,Chinese character division,and relation rule mining,to extract the concepts and relations of the course ontology from diverse web course resources.By experimental evaluation,it is proved that the technique can construct the course ontology automatically with high quality and efficiency.

Key words: Course ontology,Ontology automatically constructing,Chinese character division,Relation rule mining,Web spider

[1] Gómez-Pérez A,Manzano-Macho D.A survey of ontology lear-ning methods and techniques[R].OntoWeb:Ontology-based Information Exchange for Knowledge Management and Electronic Commerce,2003
[2] 程晓.面向半结构化文本的领域本体自动构建研究[D].哈尔滨:哈尔滨工业大学,2009
[3] 吕爽.基于叙词表的医学领域本体的构建研究[D].吉林:吉林大学,2011
[4] Missikoff M,Navigli R,Velardi P.The Usable Ontology:An Environment for Building and Assessing a Domain Ontology [M]∥The Semantic Web-ISWC 2002.2002:39-53
[5] 刘磊.基于模板的SSE_CMM领域本体自动构建研究[D].广州:南华大学,2011
[6] Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[C]∥Proc.of the ACM SIGMOD Conference on Management of Data.1993:207-216
[7] Hearst M A.Automatic acquisition of Hyponyms from largetext corpora[C]∥Proceedings of the Fourteenth International Conference on Computational Linguistic.1992
[8] Joachims T.A probabilistic analysis of the Rocchio Algorithm with TFIDF for text categorization[C]∥ Proceedings of the International Conference on Machine Learning(ICML’97).1997
[9] Kietz J U,Maedche A,Volz R.A Method for Semi-Automatic Ontology Acquisition from a Corporate Intranet[C]∥Aussenac-Gilles N,Biébow B,Szulman S,eds.Proceeding of EKAW’00 Workshop on Ontologies and Texts.Juan-Les-Pins,France,2000
[10] Suryanto H,Compton P.Discovery of Ontologies from Know-ledge Bases[C]∥Proceedings of the First International Confe-rence on Knowledge Capture.2001
[11] Staab S,Schnurr H-P,Studer R,et al.Knowledge processes and ontologies [J].IEEE Intelligent Systems,2001,16(1):23-46
[12] 陆文豪.基于关系数据库的专业领域语义词典构建研究[D].上海:复旦大学,2009
[13] 杜晶.本体知识库的完全化过程研究[D].北京:北京交通大学,2010
[14] 王雪.中文领域本体构建方法研究[D].武汉:华中科技大学,2012
[15] 俞鸿魁,张华平,刘群,等.基于层叠隐马尔科夫模型的中文命名实体识别[J].通信学报,2006,7(2):87-94

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!