计算机科学 ›› 2016, Vol. 43 ›› Issue (Z11): 161-166.doi: 10.11896/j.issn.1002-137X.2016.11A.035

• 模式识别与图像处理 • 上一篇    下一篇

融合快速稀疏描述与协同描述的人脸识别

刘子渊,江艳霞,吴腾飞   

  1. 上海理工大学光电信息与计算机工程学院 上海200093,上海理工大学光电信息与计算机工程学院 上海200093,上海理工大学光电信息与计算机工程学院 上海200093
  • 出版日期:2018-12-01 发布日期:2018-12-01

Integrating Fast Sparse Respresentation and Collaborative Representation for Face Recognition

LIU Zi-yuan, JIANG Yan-xia and WU Teng-fei   

  • Online:2018-12-01 Published:2018-12-01

摘要: 快速稀疏描述分类法(FSRC)与协同描述分类法(CRC)是在压缩感知理论的基础上发展而来的,不同的侧重点限制了两者在人脸识别上的进一步提升。针对此,提出了融合快速稀疏描述与协同描述的人脸识别方法。首先,将人脸镜像图像引入样本库;然后,利用FSRC与CRC方法求解残差矩阵;最后,利用加权信息融合的方式将两者的残差矩阵进行权值加和,依据最小值所对应的位置信息 求取 识别率。公共人脸数据库的实验表明,所提方法优于FSRC,CRC及其他方法。

关键词: 人脸识别,快速稀疏描述,协同描述,镜像图像,权重融合

Abstract: On the basis of compressed sensing theory,fast sparse representation classification (FSRC) and collaborative representation classification (CRC) were proposed.Different emphases restrict further improvement in face recognition.Focused on this,this paper proposed an improved method named integrated fast sparse representation and collaborative representation.Firstly,the face mirror image is introduced into the sample library.Then,the residuals matrix is solved with FSRC and CRC.Finally,the weights of residuals matrix get a summation by weighted fusion and the recognition rate is obtained according to the minimum value’s position information.Experiments on different face databases show that the proposed method can get better recognition performance than FSRC,CRC and others.

Key words: Face recognition,Fast sparse representation,Collaborative representation,Mirror image,Weighted fusion

[1] Liu Z,Zhang Z Y.Face geometry and appearance modeling:concepts and application[M].Cambridge University Press,2011:13-67
[2] Gross R,Matthews I,Baker S.Appearance-based face recognition and light-fields[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,6(4):449-463
[3] Dass S C,Jain A K.Markov face models[C]∥ Eighth IEEE International Conference on Computer Vision.2001:680-687
[4] Wright J,Yang A Y,Ganesh A,et al.Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,1(2):210-227
[5] Yang M,Zhang L,Zhang D.Gabor feature based robust representation and classification for face recognition with gabor occlusion dictionary[J].Pattern Recognition,2013,6:1865-1878
[6] Naseem I,Togneri R,Bennamoun M.Linear regression for face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,2(11):2106-2110
[7] Xu Y,Li X,Yang J,et al.Integrating conventional and inverse representation for face recognition[J].IEEE Transactions on Cybernetics,2014,4(10):1738-1746
[8] Xu Y,Zhang D,Yang J,et al.A two-phase test sample sparserepresentation method for use with face recognition[J].IEEE Transactions and Systems for Video Tehnology,2011,1(9):1255-1260
[9] Zhang L,Yang M,Feng X C.Sparse representation or collaborative representation:which helps face recognition?[C]∥IEEE International Conference on Computer Vision.2011:471-478
[10] Thian N P H,Marcel S,Bengio S.Improving face authentication using virtual samples[C]∥2003 IEEE International Conference on Acoustics,Speech,and Signal(ICASSP’03).2003:233-236
[11] Jung H C,Hwang B W,Lee S W.Authenticating corrupted face image based on noise model[C]∥Proceedings of sixth IEEE International Conference on Automatic Face and Gesture Recognition.2004:1-6
[12] Xu Y,Zhang Z,Lu G,et al.Approximately symmetrical face ima-ges for image preprocessing in face recognition and sparse representation based classification[J].Pattern Recognition,2016(54):68-82
[13] Donoho D L,Tsaing Y.Fast solution of l1-norm minimization problems when the solution may be sparse[J].IEEE Transactions on Information Theory,2008,4(11):4789-4812

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!