计算机科学 ›› 2016, Vol. 43 ›› Issue (Z6): 37-39.doi: 10.11896/j.issn.1002-137X.2016.6A.007

• 智能计算 • 上一篇    下一篇

基于遗传算法和BP神经网络的孤立性肺结节分类算法

胡强,郝晓燕,雷蕾   

  1. 太原理工大学计算机科学与技术学院 太原030024,太原理工大学计算机科学与技术学院 太原030024,太原理工大学计算机科学与技术学院 太原030024
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受山西省自然科学基金(2012011011-2)资助

Solitary Pulmonary Nodules Classification Based on Genetic Algorithm and Back Propagation Neural Networks

HU Qiang, HAO Xiao-yan and LEI Lei   

  • Online:2018-12-01 Published:2018-12-01

摘要: 为了提高计算机辅助诊断系统中孤立性肺结节的良恶性诊断的准确性,提出了一种基于遗传算法和BP神经网的分类算法。该算法针对BP神经网络容易陷入局部最优的问题,综合考虑孤立性肺结节的医学诊断特性,采用遗传算法对基于BP神经网络的分类器进行优化,并通过对PET/CT图像进行处理,提取病灶的功能特征、结构特征以及临床信息作为神经网络分类器的输入样本,实现孤立性肺结节的良恶性分类。对医院以及网络公共数据库中的大量实验数据进行分类实验,结果表明优化后的算法在分类准确性上有较大的提高,说明该方法在肺结节临床分类方面是有效的。

关键词: 孤立性肺结节,BP神经网络,遗传算法,分类

Abstract: In order to improve the accuracy of benign and malignant diagnosis of the solitary pulmonary nodules in the computer aided diagnosis system,this paper proposed a novel classification algorithm based on genetic algorithm and back propagation neural networks.Considering the local optimum problem of the BP neural networks and the medical diagnosis features of solitary pulmonary nodules,the proposed algorithm uses genetic algorithm to optimize the classifier based on BP neural networks.Through the PET/CT image processing,the functional characteristics,structural characteristics and clinical information of the lesions are extracted as input samples of the neural network based classifier.Then,the benign and malignant diagnosis of the solitary pulmonary nodules is realized by the novel classifier.Classify experimental results on a large number of experiment data from a hospital and public databases on network show that the optimized algorithm is greatly improved on the classification accuracy,indicating that this method is effective in clini-cal classification of pulmonary nodules.

Key words: Solitary pulmonary nodules,Back propagation neural networks,Genetic algorithm,Classification

[1] 强彦,卢军佐,赵涓涓,等.基于PET/CT的孤立性肺结节的自动分割方法[J].清华大学学报(自然科学版),2013,(2):200-204
[2] Calle-Alonso F,Pérez C J,Arias-Nicolás J P,et al.Computer-aided diagnosis system:A Bayesian hybrid classification method[J].Computer methods and Programs in Biomedicine,2013,112(1):104-113
[3] Keshani M,Azimifar Z,Tajeripour F,et al.Lung nodule seg-mentation and recognition using SVM classifier and active contour modeling:A complete intelligent system[J].Computers in Biology and Medicine,2013,43(4):287-300
[4] Tian G,Qi W.Target Recognition Algorithm Based on BP Networks and Invariant Moments[J].TELKOMNIKA Indonesian Journal of Electrical Engineering,2013,11(2):969-974
[5] 李松,刘力军,刘颖鹏.改进PSO优化BP神经网络的混沌时间序列预测[J].计算机工程与应用,2013,49(6):245-248
[6] Kai S,Zhikun L,Hang S,et al.A research of maize disease image recognition of corn based on BP networks[C]∥2011 Third International Conference on Measuring Technology and Mechatronics Automation (ICMTMA).IEEE,2011,1:246-249
[7] 王先军,白国振,杨勇明.复杂背景下BP神经网络的手势识别方法[J].计算机应用与软件,2013,30(3):247-249
[8] D Shuo,C Xiao-heng,W Qing-hui,et al.Application of BP Networks Improved by LM Algorithm in Pattern Classification[J].Electronic Test,2014,2:16
[9] 彭基伟,吕文华,行鸿彦,等.基于改进GA-BP神经网络的湿度传感器的温度补偿[J].仪器仪表学报,2013(1):153-160
[10] 戴健伟,吉华,杨岗,等.基于GA_BP算法的化工设备设计人工时预测[J].计算机集成制造系统,2013(7):1665-1675
[11] 王平,王彩芸,王文健,等.GA-BP网络在钢轨磨损量预测中的应用[J].润滑与密封,2011(2):99-102,1

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!