计算机科学 ›› 2016, Vol. 43 ›› Issue (Z6): 387-389.doi: 10.11896/j.issn.1002-137X.2016.6A.092

• 数据挖掘 • 上一篇    下一篇

基于word2vec的互联网商品评论情感倾向研究

黄仁,张卫   

  1. 重庆大学计算机学院 重庆400044,重庆大学计算机学院 重庆400044
  • 出版日期:2018-11-14 发布日期:2018-11-14

Study on Sentiment Analyzing of Internet Commodities Review Based on Word2vec

HUANG Ren and ZHANG Wei   

  • Online:2018-11-14 Published:2018-11-14

摘要: 在电子商务蓬勃发展的网络环境下,产品的评论数据已成为企业提高商品质量和提升服务的重要数据源。这些评论中包含用户对产品各个方面的情感倾向,对其进行情感分析可以帮助商家了解产品的优缺点,也能为潜在消费者的购买决策提供数据支持。提出了基于组合神经网络的商品属性聚类及基于word2vec的商品评论情感分析新方法,通过word2vec计算语义相似度,建立情感词典,用构建的情感词典对测试文本进行情感分类。实验验证了该方法在互联网商品评论中的有效性和准确性。

关键词: word2vec,情感倾向,情感词典,情感分类

Abstract: With the rapid development of e-commence under the network environment,product review has become an important data source for enterprises to improve quality and enhance service.The review comprises user’s emotional tendency in all aspects of the product.Emotional analysis can not only help business to understand the advantages and disadvantages of the product,but also provide data support for the potential consumer’s purchase decision.This paper presented a novel method to cluster commodity attribute based on combination neural network and computd sentiment of internet commodities review using word2vec.This essay computed the semantic similarity and built emotional dictionary based on word2vec,then used the emotional dictionary to obtain the emotional tendencies of the test texts.The effectiveness and accuracy of the method is validated through experiments.

Key words: Word2vec,Emotional tendency,Emotional directory,Emotional classification

[1] 张紫琼,叶强,李一军.互联网商品评论情感分析研究综述[J].管理科学,2010,13(6):84-96
[2] 钟将,杨思源,孙启干.基于文本分类的商品评价情感分析研究[J].计算机应用,2014,34(8):2317-2321
[3] Kim S M,Hovy E.Determining the sentiment of opinions[C]∥Proceedings of the 20th international conference on Computational Linguistics.Association for Computational Linguistics,2004:1367-1373
[4] Fellbaum C.WordNet:An Electronic Lexical Database[M].Bradford Book,1998
[5] Esuli A,Sebastiani F.Sentiwordnet:A publicly available lexical resource for opinion mining[C]∥Proceedings of LREC.2006(6):417-422
[6] Yi J,Nasukawa T,Bunescu R,et al.Sentiment analyzer:Extracting sentiments about a given topic using natural language processing techniques[C]∥Third IEEE International Confe-rence on Data Mining,2003(ICDM 2003).IEEE,2003:427-434
[7] 唐小丽,白宇,张桂平,等.一种面向聚类的文本建模方法[J].山西大学学报(自然科学版),2014,37(4):595-600
[8] Baumgarten M,Mulvenna M D,Rooney N,et al.Keyword-Based Sentiment Mining using Twitter[J].International Journal of Ambient Computing and Intelligence (IJACI),2013,5(2):56-69
[9] Turney P D,Littman M L.Measuring praise and criticism:Inference of Semantic Orientation from Association[C]∥Proceedings of ACM Transactions on Information Systems,2003.New York,USA,2003:315-346
[10] Yuan Cheng-xiang,Zhuang Yi,Li Hao-hong.Semantic BasedChinese Sentence Sentiment Analysis[C]∥2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery.IEEE,2011:2099-2103

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!