计算机科学 ›› 2017, Vol. 44 ›› Issue (3): 1-2.doi: 10.11896/j.issn.1002-137X.2017.03.001

• 研究快报 •    下一篇

深度学习改变保险精算定价模式

张宁   

  1. 中央财经大学中国精算研究院 北京100081
  • 出版日期:2018-11-13 发布日期:2018-11-13
  • 基金资助:
    本文受教育部人文社科项目(16YJCZH148),教育部人文社会科学重点研究基地重大项目(16JJD790060),北京市哲学社会科学基金项目(15JGC153), 中央财经大学科研创新团队和数据灯塔(Data Lighthouse)计划资助

New Pattern of Actuarial Pricing Based on Deep Learning

ZHANG Ning   

  • Online:2018-11-13 Published:2018-11-13

摘要: 介绍了一种基于生理年龄的精算定价新方式,该方式基于手背纹理照片,利用深度学习技术获得可靠的生理年龄评价结果,从而将其应用于保险上以获得更能反映投保人风险的定价。该技术和框架是深度学习在保险公司应用上的尝试,变革了数百年来保险公司基于日历年龄定价的传统模式。

关键词: 深度学习,精算定价,生理年龄

Abstract: The research introduced an actuarial pricing model based on biological age.And the deep learning technique was applied to get the robust biological age when a hand-back photo was provided.The new pricing model can show more accurate risk of policyholder and change the old way based on calendar age.

Key words: Deep learning,Actuarial pricing,Biological age

[1] GLEI D A,GOLDMAN N,RISQUES R A,et al.Predicting Sur-vival from Telomere Length versus Conventional Predictors:A Multinational Population-Based Cohort Study[J].Plos One,2016,1(4):e0152486.
[2] LEVINE M E.Modeling the rate of senescence:can estimated biological age predict mortality more accurately than chronological age?[J].The journals of gerontology.Series A,Biological sciences and medical sciences,2013,8(6):667-674.
[3] HILTON G E,SALAKHUTDINOV R R.Reducing the Dimensionality of Data with Neural Network[J].Science,2006,313:504-507.
[4] LECUN Y,BENGIO Y,HILTON G.Deep Learning[J].Na-ture,2015,521:436-444.
[5] KRIZHEVSKY A,SUTSKEVER I,H INTON G.ImageNet clas-sification with deep convolutional neural networks[C]∥Proc.Advances in Neural Information Processing Systems.2012,25:1090-1098.
[6] TOMPSON J,JAIN A,LECUN Y,et al.Joint training of a convolutional network and a graphical model for human pose estimation[C]∥Proc.Advances in Neural Information Processing Systems.2014,27:1799-1807.
[7] MIKOLOV T,DEORAS A,POVEY D,et al.Strategies fortraining large scale neural network language models[C]∥Proc.Automatic Speech Recognition and Understanding.2011:196-201.
[8] MA J,SHERIDAN R P,LIAW A,et al.Deep neural nets as a method for quantitative structure-activity relationships[J].Journal of Chemical Information & Modeling,2015,5(2):263-274.
[9] WESTON J,BORDES A,C HOPRA S,et al.Towards AI-complete question answering:a set of prerequisite toy tasks.http://arxiv.org/abs/1502.05698.
[10] MNIH V,et al.Human-level control through deep reinforce-ment learning[J].Nature,2015,518:529-533.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .