计算机科学 ›› 2017, Vol. 44 ›› Issue (10): 26-32.doi: 10.11896/j.issn.1002-137X.2017.10.005

• • 上一篇    下一篇

引力波cWB处理流水线的GPU加速

都志辉,林璋熙,顾彦祺,Eric O.LEBIGOT,郭翔宇   

  1. 清华大学计算机科学与技术系 北京100084,清华大学计算机科学与技术系 北京100084,清华大学计算机科学与技术系 北京100084,清华大学信息技术研究院 北京100084;巴黎第七大学天体粒子与宇宙学实验室 巴黎75205,清华大学计算机科学与技术系 北京100084
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金(61440057,7,61363019,61073008)资助

GPU Accelerated cWB Pipeline for Gravitational Waves Discovery

DU Zhi-hui, LIN Zhang-xi, GU Yan-qi, Eric O.LEBIGOT and GUO Xiang-yu   

  • Online:2018-12-01 Published:2018-12-01

摘要: 引力波是爱因斯坦广义相对论的一个重要预言。大爆炸,特别是双黑洞、双中子星等双星系统是理论上最容易探测到的引力波波源。因为可以通过引力波了解这些重大的天体现象,所以对引力波的探测具有十分重要的科学意义。为此, 建造 了多个耗费巨资的基于激光干涉原理的引力波观测站(Laser Interferometer Gravitational-Wave Observatory,LIGO),以期能够首次直接探测到引力波。cWB(coherent Wave Burst)是一条能对多个观测站的数据进行实时分析处理的流水线。如何提高cWB程序的计算能力,成为了探测引力波的道路上亟待解决的问题。在分析cWB流水线特点的基础上,找到其性能瓶颈,设计并实现了一种有效的并行方法,在具有很强并行处理能力的GPU硬件上实现了对cWB流水线的加速。实验结果表明,与原来基于SSE优化加速的CPU实现相比,该CPU可以达到至少10倍的加速,这对于实现多个站点引力波信号的实时处理具有重要意义,在实时数据处理技术上为使用高精度的探测设备发现引力波提供了支持。

关键词: 引力波,cWB流水线,GPU,并行处理

Abstract: Gravitational wave (GW) is an important prediction of Einstein’s general relativity theory.Some were genera-ted during the big bang.Their most easily detectable sources are expected to be binaries of orbiting objects like black holes and/or neutron stars.Their study can thus give information about some important astrophysical objects.A few large-scale laser interferometer gravitational wave observatories have been built,with the goal of directly detecting GWs for the first time.Coherent Wave Burst (cWB) is an important pipeline that looks for gravitational wave in the data from multiple observatories,simultaneously and in real time.It is useful to improve the performance of cWB so as to allow it to perform deeper analyses. Therefore we analyzed a time-critical function from cWB,designed and implemented an efficient acceleration method on GPU.Experimental results show that our method can achieve at least 10x speedup compared with the original CPU implementation with SSE instruction.The results show that our GPU acceleration method is a viable option for improving gravitational wave data processing.

Key words: Gravitational waves,cWB pipeline,GPU,Parallel processing

[1] FINLEY,DAVE.Einstein’s gravity theory passes toughest test yet:Bizarre binary star system pushes study of relativity to new limits[N].Phys.Org.,2013.
[2] THORNE K.Gravitational Radiation in 300 Years of Gravitation[M].HAWKING S W,ISRAEL W,eds.Cambridge University Press,1987.
[3] GERTSENSHTEIN M E,PUSTOVOIT V I .On the detection of low-frequency gravitational waves[J].Soviet Journal of Experimental and Theoretical Physics,1963,6(2):433.
[4] CARON B,DOMINJON A,DREZEN C D,et al.The virgo interferometer[J].Classical and Quantum Gravity,1997,4(6):1461.
[5] LUCK H,et al.The geo600 project[J].Classical and Quantum Gravity,1997,4(6):1471.
[6] ANDO M,ARAI K,TAKAHASHI R,et al.Stable operation of a 300-m laser interferometer with sufficient sensitivity to detect gravitational-wave events within our galaxy[J].Phys.Rev.Lett.,2001,6:3950-3954.
[7] HARRY G M,et al.Advanced ligo:the next generation of gravitational wave detectors[J].Classical and Quantum Gravity,2010,7(8):084006.
[8] ASSNOVIC K,BODIK R,DEMMEL J,et al.A view of the parallel computing landscape[J].Communications of the ACM,2009,2(10):56-67.
[9] OWENS J D,et al.A survey of general-purpose computation on graphics hardware[J].Computer Graphics Forum,2010,6(1):80-113.
[10] TOP500 list of the world’s most powerful supercomputers.https://www.top500.org.
[11] KLIMENKO S,et al.Coherent method for detection of gravitational wave bursts[J].Class.Quantum Grav.,2008,5:114029.
[12] ABADIE J,et al.All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run[J].Phys.Rev.D,2012,5:12200.
[13] LIU Y, DU Z H,CHUNG S K,et al.GPU-accelerated low-latency real-time searches for gravitational waves from compact binary coalescence[J].Classical and Quantum Gravity (CQG),2012,9(23):235018.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75, 88 .
[2] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[3] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[4] 王欢,张云峰,张艳. 一种基于CFDs规则的修复序列快速判定方法[J]. 计算机科学, 2018, 45(3): 311 -316 .
[5] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[6] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[7] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[8] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[9] 钟菲,杨斌. 基于主成分分析网络的车牌检测方法[J]. 计算机科学, 2018, 45(3): 268 -273 .
[10] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99, 116 .