计算机科学 ›› 2017, Vol. 44 ›› Issue (10): 33-37, 50.doi: 10.11896/j.issn.1002-137X.2017.10.006

• 生物信息学 • 上一篇    下一篇

SBV:基于SVG的生物信息可视化软件

蔡瑞初,林殷娴,艾鹏   

  1. 广东工业大学计算机学院 广州510006,广东工业大学计算机学院 广州510006,基迪奥生物科技有限公司 广州510006
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受NSFC-广东联合基金(U1501254),国家自然科学基金(61472089),广东省自然科学基金(2014A030306004,2014A030308008),广东省科技计划项目(2015B010108006,5B010131015),广东特支计划(2015TQ01X140),广州市珠江科技新星(201610010101),广州市科技计划项目(201604016075)资助

SBV:A Bioinformatics Visualization Software Based on SVG

CAI Rui-chu, LIN Yin-xian and AI Peng   

  • Online:2018-12-01 Published:2018-12-01

摘要: 生物信息可视化是从生物大数据中挖掘有效信息的重要手段。针对生物信息的海量性、可视化效果的精确性、各种可视化需求的多样性等挑战,设计并实现了一款基于SVG矢量图的生物信息可视化软件SBV (SVG for Bioinformatics Visualization)。SBV充分利用了SVG的可伸缩性、DOM和CSS表现形式的可定制性,实现了10余种常用的生物信息用图,可支持现有的大部分生物信息可视化,是一款易于操作的综合型生物信息画图软件。目前该软件已经在Github上开源,为后续开发 更多功能奠定了较好的基础。

关键词: 生物信息,可视化,SVG,染色体图

Abstract: Bioinformatics visualization is an important approach to exploit the information behind the massive biological data.In view of the challenges like massive data size,accurate visualization effect and diversified visualization requirements,we presented a bioinformatics visualization software based on SVG,called SBV (SVG for Bioinformatics Visuali-zation).SBV takes advantages of scalability of SVG and customizable performance form of DOM and CSS to draw a variety of bioinformatics maps.It is a maneuverable integrative bioinformatics visualization platform supporting most of existing bioinformatics visualization requirements.The software has been open source in Github,which provides good foundation for the further development.

Key words: Bioinformatics,Visualization,SVG,Chromosome map

[1] Cline M S,Kent W J.Understanding genome browsing[J].Nature Biotechnology,2009,27(2):153-155.
[2] PAVLOPOULOS G A,IACUCCI E,ILIOPOULOS I,et al.Interpreting the Omics ‘era’ Data[M]∥Multimedia Services in Intelligent Environments.Springer International Publishing,2013:79-100.
[3] KENT W J,SUGNET C W,FUREY T S,et al.The Human Genome Browser at UCSC[J].Genome Research,2002,12(6):996.
[4] ABEEL T,VAN P T,SAEYS Y,et al.GenomeView:a next-generation genome browser[J].Nucleic Acids Research,2012,40(2):e12.
[5] ROBINSON J T,THORVALDSDTTIR H,W INCKLER W,et al.Integrative genomics viewer[J].Nature Biotechnology,2011,29(1):24-26.
[6] PEREZLLAMAS C,LOPEZBIGAS N.Gitools:Analysis andVisualisation of Genomic Data Using Interactive Heat-Maps[J].Plos One,2011,6(6):e19541.
[7] SEVERIN J,LIZIO M,HARSHBARGER J,et al.Interactivevisualization and analysis of large-scale sequencing datasets using ZENBU[J].Nature Biotechnology,2014,32(3):217-219.
[8] MEDINA I,SALAVERT F,SANCHEZ R,et al.GenomeMaps,a new generation genome browser[J].Nucleic Acids Research,2013,41(Web Server issue):41-46.
[9] SHANNON P,MARKIEL A,OZIER O,et al.Cytoscape:A software environment for integrated models of biomolecular interaction networks[J].Genome Res,2003,13:2498-2504.
[10] KRZYWINSKI M,SCHEIN J,BIROL ,et al.Circos:An information aesthetic for comparative genomics[J].Genome Res,2009,19:1639-1645.
[11] WHEELER D L,CHURCH D M,F EDERHEN S,et al.Database resources of the national center for biotechnology[J].Nucleic Acids Research,2003,31(1):28-33.
[12] WESTESSON O,SKINNER M,HOLMES I.Visualizing next-generation sequencing data with JBrowse[J].Briefings in Bioinformatics,2013,14(2):172-177.
[13] MUKHYALA K,MASSELOT A.Visualization of protein se-quence features using JavaScript and SVG with pViz.js[J].Bioinformatics,2014,30(23):3408-3409.
[14] PAVLOPOULOS G A,MALLIARAKIS D, PAPANIKOLAOU N,et al.Visualizing genome and systems biology:technologies,tools,implementation techniques and trends,past,present and future[J].GigaScience,2015,4(1):38.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75, 88 .
[2] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[3] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[4] 王欢,张云峰,张艳. 一种基于CFDs规则的修复序列快速判定方法[J]. 计算机科学, 2018, 45(3): 311 -316 .
[5] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[6] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[7] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[8] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[9] 钟菲,杨斌. 基于主成分分析网络的车牌检测方法[J]. 计算机科学, 2018, 45(3): 268 -273 .
[10] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99, 116 .