计算机科学 ›› 2017, Vol. 44 ›› Issue (10): 103-108.doi: 10.11896/j.issn.1002-137X.2017.10.020

• 网络与通信 • 上一篇    下一篇

基于信誉机制的认知Ad hoc网络分簇协作频谱感知

齐全,王可人,杜奕航   

  1. 电子工程学院 合肥230037,电子工程学院 合肥230037,电子工程学院 合肥230037
  • 出版日期:2018-12-01 发布日期:2018-12-01

Cooperative Spectrum Sensing Based on Reputation Mechanism in Cognitive Ad hoc Networks

QI Quan, WANG Ke-ren and DU Yi-hang   

  • Online:2018-12-01 Published:2018-12-01

摘要: 为了提高认知Ad hoc网络频谱感知的准确率,并抵抗可能存在的SSDF攻击,提出一种基于信誉机制的认知Ad hoc网络分簇协作频谱感知方法。首先,引入检测因子来描述节点的感知能力,采用基于公平性的分簇方法将SU分为不同的簇;然后,对簇内SU设定初始信誉值,并根据感知结果对信誉值进行更新;最后,采用检测因子判决机制对感知数据进行融合,并计算得出漏检概率与虚警概率上界。仿真结果表明,所提方法能有效识别恶意次用户和抵御频谱感知数据伪造攻击,同时具有较小的虚警概率、漏检概率和较好的容错能力。

关键词: 认知无线电,Ad hoc网络,协作频谱感知,分簇,SSDF攻击

Abstract: To improve the accuracy of spectrum sensing and to resist the possible threat of SSDF attacks of cognitive Ad hoc networks,a new scheme of cooperative spectrum sensing for cognitive Ad hoc networks based on reputation mechanism was proposed.First,the detection factor is introduced to describe different SUs’ perception ability,and the SUs is divided into different clusters according to the fairness based clustering method.Then,the reputation value of the SUs in the cluster is set and updated according to the sensing results.Finally,the detection factor decision mechanism is designed for spectrum sensing data fusion.The theoretical upper bound of missed detection and false alarm probability is calculated.The simulation result shows that this scheme can effectively identify malicious users and resist SSDF attack with better fault tolerance,smaller false alarm and missed detection probability.

Key words: Cognitive radio,Ad hoc network,Cooperative spectrum sensing,Clustering,SSDF attack

[1] CHEN B,HU F,ZHU K.Research Progress of Cognitive Radio[J].Journal of Data Acquisition and Processing,2016,31(3):440-451.(in Chinese) 陈兵,胡峰,朱琨.认知无线电进展[J].数据采集与处理,2016,31(3):440-451.
[2] ALVI S A,YOUNIS M S,IMRAN M,et al.A Near-OptimalLLR Based Cooperative Spectrum Sensing Scheme for CRAHNs[J].IEEE Transactions on Wireless Communications,2015,4(7):3877-3887.
[3] LI Z Q,YU F R,HUANG M Y.A distributed consensus—based cooperative spectrum sensing scheme in cognitive radios[J].IEEE Transactions on Vehicular Technology,2010,59(1):383-393.
[4] SMITHA K G,VINOD A P.Cluster based cooperative spectrum sensing using location information for cognitive radios under reduced bandwidth:Circuits and Systems (MWSCAS)[C]∥ IEEE International Midwest Symposium on Circuits & Systems.Sydney,2011:7-10.
[5] MANSOOR N,ISLAM A K M M,ZAREEI M,et al.Spectrum aware cluster-based architecture for cognitive radio ad-hoc networks:Advances in Electrical Engineering (ICAEE)[C]∥2013 International Conference on Advances in Electrical Engineering (ICAEE).Dhaka Bangladesh,2013:181-185.
[6] JIAO Y,YIN P,JOE I.Clustering scheme for cooperative spectrum sensing in cognitive radio networks[J].IET Communications,2016,10(13):1590-1595.
[7] SUN J F,GAO J C,LIU Y A,et al.Clustering Method for Cognitive Radio User Based on the Results of Spectrum Sensing[J].Journal of Electronics & Information Technology,2012,34(4):782-786.(in Chinese) 孙剑锋,高锦春,刘元安,等.基于频谱感知结果的认知无线电用户分簇方法[J].电子与信息学报,2012,34(4):782-786.
[8] ZHANG W J,YANG Y Q,YEO C K.Cluster-Based Cooperative Spectrum Sensing Assignment Strategy for Heterogeneous Cognitive Radio Network[J].IEEE Transactions on Vehicular Technology,2015,64(6):2637-2647.
[9] LIU S S,LAZOS L,KRUNZ M.Cluster-Based Control Channel Allocation in Opportunistic Cognitive Radio Networks[J].IEEE Transactions on Mobile Computing,2012,11(10):1436-1449.
[10] TAN X J,ZHAN W.Control information exchange in cognitive radio ad hoc networks with heterogeneous spectrum [C]∥2014 IEEE Global Communications Conference.Xi’an,Globecom,2014:986-992.
[11] RINA K,NATH S,MARCHANG N,et al.Can Clustering be Used to Detect Intrusion During Spectrum Sensing in Cognitive Radio Networks[J].IEEE Systems Journal,2016(99):1-10.
[12] MIN A W,ZHANG X,KANG G S.Detection of small-scale primary users in cognitive radio networks[J].IEEE Journal of Selected Areas in Communications,2011,29(2):349-361.
[13] KOH C W K,YAU K L A.Trust and reputation scheme forclustering in Cognitive Radio Networks[C]∥International Conference on Frontiers of Communications,Networks and Applications (ICFCNA 2014).Malaysia,2014:1-9.
[14] QIN T,YU H,LEUNG C,SHEN Z,et al.Towards a trustaware cognitive radio architecture[J].ACM SIGMOBILE Mobile Computer Communication Review,2009,13(2):86-95.
[15] DU Z Y,CHEN H N,SONG F.SNR based Weighted-Consensus Algorithm for Cooperative Spectrum-sensing[J].Journal of Data Acquisition and Processing,2013,8(2):184-189.(in Chinese) 杜智勇,陈浩楠,宋绯.一种基于信噪比加权共识的协作频谱感知算法[J].数据采集与处理,2013,8(2):184-189.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75, 88 .
[2] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[3] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[4] 王欢,张云峰,张艳. 一种基于CFDs规则的修复序列快速判定方法[J]. 计算机科学, 2018, 45(3): 311 -316 .
[5] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[6] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[7] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[8] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[9] 钟菲,杨斌. 基于主成分分析网络的车牌检测方法[J]. 计算机科学, 2018, 45(3): 268 -273 .
[10] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99, 116 .