计算机科学 ›› 2018, Vol. 45 ›› Issue (1): 73-78.doi: 10.11896/j.issn.1002-137X.2018.01.011

• CRSSC-CWI-CGrC-3WD 2017 • 上一篇    下一篇

基于单边区间集概念格的不完备形式背景的属性约简

王振,魏玲   

  1. 西北大学数学学院 西安710127,西北大学数学学院 西安710127
  • 出版日期:2018-01-15 发布日期:2018-11-13
  • 基金资助:
    本文受国家自然科学基金项目(11371014,1)资助

Attribute Reduction of Partially-known Formal Concept Lattices for Incomplete Contexts

WANG Zhen and WEI Ling   

  • Online:2018-01-15 Published:2018-11-13

摘要: 单边区间集概念的提出为不完备形式背景的数据分析奠定了理论基础,也为研究其属性约简提供了思路。首先给出了不完备形式背景上的4种约简,即保持单边区间集概念格结构不变的约简、保持并(交)不可约元外延不变的约简与保持对象单边区间集概念外延不变的约简,并研究了它们的关系,最后给出了基于差别矩阵与差别函数计算约简的方法。

关键词: 不完备形式背景,单边区间集概念,属性约简,差别矩阵

Abstract: Partially-known formal concept,which was proposed recently,lays the foundation of data analysis of incomplete contexts and also provides the thought of studying on attribute reduction.This paper firstly proposed four kinds of attribute reduction:partially-known formal concept lattice reduction,meet(join)-irreducible elements preserving reduction and partially-known object formal concept preserving reduction.And then,it discussed the relationships among the four kinds of reduction.Finally,it presented the approaches to finding these reduction by discernibility matrices and discernibility functions.

Key words: Incomplete context,Partially-known formal concept,Attribute reduction,Discernibility matrix

[1] WILLE R.Restructuring Lattice Theory:An Approach Based on Hierarchies of Concepts[M]∥Riaral I,ed.ordered Sets.Reidel,Dord recht,1982:445-470.
[2] LIU X L,HONG W X,ZHANG T.TCM Differentiation Visua-lization Methods Based on Formal Concept Analysis[J].Journal of Yanshan University,2010,34(2):162-168.(in Chinese) 刘旭龙,洪文学,张涛.基于形式概念分析的中医辨证可视化方法[J].燕山大学学报,2010,34(2):162-168.
[3] MISSAOUI R,GODIN R.Extracting Exact and ApproximateRules from Databases [C]∥Proceedings of SOFTEKS Workshop on Incompleteness and Uncertainty in Information Systems.1993:209-222.
[4] GUO X E,WANG J H.Multi-dimensional Concept Lattice and Association Rules Discovery[J].Journal of Computer Application,2010,30(4):1072-1075.(in Chinese) 郭显娥,王俊红.多维概念格与关联规则的发现[J].计算机应用,2010,30(4):1072-1075.
[5] SUTTON A,MALETIC J I.Recovering UML Class Modelsfrom C++:A Detailed Explanation[J].Information and Software Technology,2007,49(3):212-229.
[6] GODIN R,MISSAOUI R.An Incremental Concept FormationApproach for Learning from Database[J].Theoretical Computer Science,1994,133(2):387-419.
[7] FREEMAN L,WHITE D.Using Galois Lattices to Represent Network Data[J].Sociological Methodology,1993,23:127-146.
[8] HO T B.An Approach to Concept Formation Based on Formal Concept Analysis[J].IEICE Transactions on Information and Systems,1995,E78-D(5):553-559.
[9] PAWLAK Z.Theoretical Aspects of Reasoning about Data[M].Boston,Kluwer Academic Publishers,1991.
[10] WEI L.The Theory and Methods of Rough Sets and Concept Lattice Reduction[D].Xi’an:Xi’an Jiaotong University,2005.(in Chinese) 魏玲.粗糙集与概念格约简理论与方法[D].西安:西安交通大学,2005.
[11] NOURINE L,RAYNAUD O.A Fast Algorithm for BuildingLattices[J].Information Processing Letters,1999,71:199-204.
[12] ZHANG W X,QIU G F.Uncertain Decision Making Based on Rough Sets[M].Beijing:Tsinghua University Press,2005:185-193.(in Chinese) 张文修,仇国芳.基于粗糙集的不确定决策[M].北京:清华大学出版社,2005:185-193.
[13] WEI L,WAN Q,QIAN T,et al(1)An Overview of Triadic Concept Analysis[J].Journal of Northwest University (Natural Science Edition),2014,44(5):689-699.(in Chinese) 魏玲,万青,钱婷,等.三元概念分析综述[J].西北大学学报(自然科学版),2014,44(5):689-699.
[14] REN R S,WEI L.The attribute reductions of three-way concept lattices[J].Knowledge-Based Systems,2016,99(C):92-102.
[15] BURMEISTER P,HOLZER R.On the treatment of incomplete knowledge in formal concept analysis[C]∥Conceptual Structures:Logical,Linguist,and Computa-tional Issues.Berlin,Heidelberg:Springer-Verlag,2000:385-398.
[16] LI J H,MEI C L,LV Y J.Incomplete decision contexts:Approximate concept construction,rule acquisition and knowledge reduction[J].International Journal of Approximate Reasoning,2013,54(1):149-165.
[17] YAO Y.Interval sets and three-way concept analysis in incomplete contexts[J].International Journal of Machine Learning & Cybernetics,2017,8(1):3-20.
[18] LI M Z,WANG G Y.Approximate concept construction with three-way decisions and attribute reduction in incomplete contexts[J].Knowledge-Based Systems,2016,91:165-178.
[19] DAVEY B A,PRIESTLEY H A.Introduction of Lattice and Order[M]∥Cambridge University Press.Cambridge United Kingdom,1990.
[20] ZHANG W X,WEI L,QI J J.Attribute reduction theory and approach to concept lattice[J].Science in China Series ,2005,48(6):713-726.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .