计算机科学 ›› 2018, Vol. 45 ›› Issue (1): 122-127.doi: 10.11896/j.issn.1002-137X.2018.01.020
• CRSSC-CWI-CGrC-3WD 2017 • 上一篇 下一篇
李瑶,曹菡,马晶
LI Yao, CAO Han and MA Jing
摘要: 针对海南省旅游需求预测问题,对传统的灰马尔科夫模型进行改进,提出了一种动态优化子集模糊灰马尔科夫预测模型。该模型首先根据GM(1,1)模型预测结果的平均绝对误差百分比,通过输入子集法来确定最优输入子集个数;然后利用模糊集理论,将计算出的隶属度向量作为马尔科夫转移矩阵向量的权重,以修正预测值。为了能够根据时间推移进行预测,建立了等维递补的动态预测模型。实验以海南省各市县旅游饭店接待情况为例,验证了该模型可以有效地提高预测数据的准确性。
[1] YANG L X,YIN S L.A Literature Review and Applicationabout Artificial Intelligence in Tourism Demand Forecasting[J].Tourism Tribune,2008(9):17-22.(in Chinese) 杨立勋,殷书炉.人工智能方法在旅游预测中的应用及评析[J].旅游学刊,2008(9):17-22. [2] DAI B,ZHANG P Y.Tourism demand forecast based on the improved double parallel dynamic process neural network[J].Journal of Changchun University,2010(1):21-23.(in Chinese) 戴冰,张培茵.基于改进的双并联动态过程神经网络的旅游需求预测[J].长春大学学报,2010(1):21-23. [3] TEIXEIRA J P,FERNANDES P O.Tourism time series forecast with artificial neural networks[J].Tekhne,2014,12(1):26-36. [4] CLAVERIA O,TORRA S.Forecasting tourism demand to Cata-lonia:Neural networks vs.time series models[J].Economic Modelling,2014,36:220-228. [5] ZENG D L,YU K,ZHAO Q J.Tourism demand forecastingbased on Grey system theory and Markov adjustment-talking Yunnan tourism market as an example[J].Journal of Chongqing Technology and Bussiness University (Natural Science Edition),2016(4):58-68.(in Chinese) 曾冬玲,喻科,赵清俊.基于灰色理论和马尔科夫修正的旅游需求预测——以云南省旅游市场为例[J].重庆工商大学学报(自然科学版),2016(4):58-68. [6] LI K Z,LI Z W,ZHAO L J.An optimized GM(1,1) deformation forecasting model based on Markov theory[J].Science of Surveying and Mapping,2016(8):1-5.(in Chinese) 李克昭,李志伟,赵磊杰.马尔科夫理论的优化灰色模型预测建模[J].测绘科学,2016(8):1-5. [7] ZHANG W Y,LUAN J.Tourist amount forecasting methodbased on improving GM-Markov modeling and its application[J].Computer Engineering and Applications,2016,52(13):110-114,151.(in Chinese) 张文宇,栾婧.改进GM-Markov模型的游客量预测方法及其应用[J].计算机工程与应用,2016,52(13):110-114,1. [8] HUANG Y F,WANG C N,DANG H S,et al.Predicting the trend of taiwan’s electronic paper industry by an effective combined grey model[J].Sustainability,2015,7(8):10664-10683. [9] 刘思峰,杨英杰,吴利丰.灰色系统理论及其应用[M].北京:科学出版社,2014. [10] LIU E,WANG Q,GE X,et al.Dynamic Discrete GM (1,1) Model and Its Application in the Prediction of Urbanization Conflict Events[J].Discrete Dynamics in Nature and Society,2016,2016(1):1-10. [11] WANG Z X,HAO P.An improved grey multivariable model for predicting industrial energy consumption in China[J].Applied Mathematical Modelling,2016,40(11):5745-5758. [12] ZHAO H,GUO S.An optimized grey model for annual power load forecasting[J].Energy,2016,107:272-286. [13] REZAEIANZADEH M,STEIN A,COX J P.Drought forecasting using markov chain model and artificial neural networks[J].Water Resources Management,2016,30(7):2245-2259. [14] XIE N,YUAN C,YANG Y.Forecasting China’s energy de-mand and self-sufficiency rate by grey forecasting model and markov model[J].International Journal of Electrical Power & Energy Systems,2015,66:1-8. [15] BAHRAMI S,HOOSHMAND R A,PARASTEGARI M.Short term electric load forecasting by wavelet transform and grey model improved by pso (particle swarm optimization) algorithm[J].Energy,2014,72:434-442. [16] LU S L,TSAI C F.Petroleum demand forecasting for Taiwan using modified fuzzy-grey algorithms[J].Expert Systems,2016,33(1):60-69. [17] GUPTA M,GAO J,AGGARWAL C C.Outlier detection fortemporal data:A survey[J].IEEE Trans on Knowledge and Data Engineering,2014,26(9):2250-2267. [18] WU L,LIU S,YANG Y.Grey double exponential smoothingmodel and its application on pig price forecasting in China[J].Applied Soft Computing,2016,39:117-123. [19] SAMET H,MOJALLAL A.Enhancement of electric arc furnace reactive power compensation using grey-markov prediction method[J].IET generation,transmission & distribution,2014,8(9):1626-1636. [20] LIU C,SHU T,CHEN S,et al.An improved grey neural network model for predicting transportation disruptions[J].Expert Systems with Applications,2016,45:331-340. [21] SUN X,SUN W,WANG J,et al.Using a grey-markov modeloptimized by cuckoo search algorithm to fo-recast the annual foreign tourist arrivals to China[J].Tourism Management,2016,52:369-379. [22] CHEN M Y,CHEN B T.A hybrid fuzzy time series modelbased on granular computing for stock price forecasting[J].Information Sciences,2015,294:227-241. [23] CHEN M Y,CHEN B T.A hybrid fuzzy time series modelbased on granular computing for stock price forecasting[J].Information Sciences,2015,294:227-241. [24] CHEN M Y,CHEN B T.Online fuzzy time series analysis based on entropy discretization and a fast fourier transform[J].Applied Soft Computing,2014,14:156-166. |
No related articles found! |
|