计算机科学 ›› 2018, Vol. 45 ›› Issue (1): 249-254.doi: 10.11896/j.issn.1002-137X.2018.01.044
程雪梅,杨秋辉,翟宇鹏,陈伟
CHENG Xue-mei, YANG Qiu-hui, ZHAI Yu-peng and CHEN Wei
摘要: 回归测试的目的是保证软件修改后没有引入新的错误。但是随着软件的演化,回归测试用例集不断增大,为了控制成本,回归测试用例选择技术应运而生。近年来,聚类分析技术被运用到回归测试用例选择问题中。将半监督学习引入到聚类技术中,提出了判别型半监督K-means聚类方法(Discriminative Semi-supervised K-means clustering Method,DSKM)。该方法从回归测试的历史执行记录中挖掘出隐藏的成对约束信息,同时利用大量的无标签样本和少量的有标签样本进行学习,优化聚类的结果,并进一步优化测试用例选择的结果。实验表明,相对于Constrained-Kmeans方法和SSKM方法,DSKM方法能够更好地提高约简率并保持覆盖率。
[1] CHEN Z,ZHENYU C,ZHIHONG Z,et al.An Improved Regression Test Selection Technique by Clustering Execution Profiles[C]∥Tenth International Conference on Quality Software.New York:IEEE,2010:171-179. [2] LEUNG H K N,WHITE L.Insights into regression testing[C]∥Conference on Software Maintenance.New York:IEEE,2002:60-69. [3] ROTHERMEL G,HARROLD M J.Analyzing regression test selection techniques[J].IEEE Transactions on Software Engineering,1996,22(8):529-551. [4] ROTHERMEL G,HARROLD M J.A framework for evaluating regression test selection techniques[C]∥16th International Conference on Software Engineering.New York:IEEE,2002:201-210. [5] ROTHERMEL G,HARROLD M J.A safe,efficient regression test selection technique[J].ACM Transactions on Software Engineering and Methodology,1997,6(2):173-210. [6] BEYDEDA S,GRUHN V.Integrating white-and black-box tech-niques for class-level regression testing[C]∥25th Annual International Computer Software and Applications Conference.New York:IEEE,2002:357-362. [7] WHITE L J,LEUNG H K N.A firewall concept for both control-flow and data-flow in regression integration testing[C]∥Conference on Software Maintenance.New York:IEEE,2002:262-271. [8] GUPTA R,HARROLD M J,SOFFA M L.An approach to regression testing using slicing[C]∥Conference on Software Maintenance.New York:IEEE,2002:299-308. [9] LARPRATTANAKUL A,SUWANNASART T.An Approach for Regression Test Case Selection Using Object Dependency Graph[C]∥2013 5th International Conference on Intelligent Networking and Collaborative Systems.New York:IEEE,2013:617-621. [10] GLIGORIC M,ELOUSSI L,MARINOV D.Practical regression test selection with dynamic file dependencies[C]∥Proceedings of the 2015 International Symposium on Software Testing and Analysis.New York:ACM,2015:211-222. [11] LEGUNSEN O,HARIRI F,SHI A,et al.An extensive study of static regression test selection in modern software evolution[C]∥Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering.New York:ACM,2016:583-594. [12] SHI A,YUNG T,GYORI A,et al.Comparing and combining test-suite reduction and regression test selection[C]∥ Proceedingsof the 2015 10th Joint Meeting on Foundations of Software Engineering.New York:ACM,2015:237-247. [13] DICKINSON W,LEON D,FODGURSKI A.Finding failures by cluster analysis of execution profiles[M].Washington,DC,USA:IEEE Computer Society,2001:339-348. [14] YOO S,HARMAN M,TONELLA P,et al.Clustering test cases to achieve effective and scalable prioritisation incorporating expert knowledge[C]∥Eighteenth international symposium on Software testing and analysis.New York:ACM,2009:201-212. [15] SONGYU C,ZHENYU C,ZHIHONG Z,et al.Using semi-supervised clustering to improve regression test selection techniques[C]∥2011 Fourth IEEE International Conference on Software Testing,Verification and Validation.New York:IEEE,2011:1-10. [16] PARSA S,KHALILIAN A,FAZLALIZADEH Y.A new algorithm to Test Suite Reduction based on cluster analysis[C]∥2nd IEEE International Conference on Computer Science and Information Technology.New York:IEEE 2009:189-193. [17] YIN X S,HU S L,CHEN S C.Discriminative semi-supervised clustering analysis with pairwise constraints [J].Journal of Software,2008,9(11):2791-2802.(in Chinese) 尹学松,胡思良,陈松灿.基于成对约束的判别型半监督聚类分析[J].软件学报,2008,19(11):2791-2802. [18] ZHANG D,ZHOU Z H,CHEN S.Semi-Supervised Dimensiona-lity Reduction[C]∥Proceedings of the 2007 SIAM InternationalConference on Data Mining.Philadelphia:SIAM,2007:629-634. [19] SHALI Y,ZHENYU C,ZHIHONG Z,et al.A Dynamic TestCluster Sampling Strategy by Leveraging Execution Spectra Information[C]∥2010 Third International Conference on Software Testing,Verification and Validation.New York:IEEE,2010:147-154. [20] MUTHYALA K,NAIDU R.A novel approach to test suite reduction using data mining[J].Indian Journal of Computer Scien-ce and Engineering,2011,2(3):500-505. [21] WAGSTAFF K,CARDIE C,ROGERS S,et al.Constrained K-means Clustering with Background Knowledge[C]∥Eighteenth International Conference on Machine Learning.San Francisco:ACM,2001:577-584. |
No related articles found! |
|