计算机科学 ›› 2018, Vol. 45 ›› Issue (3): 51-57.doi: 10.11896/j.issn.1002-137X.2018.03.008

• 第十届全国几何设计与计算学术会议 • 上一篇    下一篇

可再生混合高阶指数多项式的插值细分法

李照宏,郑红婵,廉慧芬,金明娅   

  1. 西北工业大学应用数学系 西安710129,西北工业大学应用数学系 西安710129,西北工业大学应用数学系 西安710129,西北工业大学应用数学系 西安710129
  • 出版日期:2018-03-15 发布日期:2018-11-13
  • 基金资助:
    本文受陕西省自然科学基金项目:基于细分法的可控分形生成及自然景物模拟研究(S2016YFJM1161)资助

Interpolatory Subdivision Schemes for Mixed Higher-order Exponential Polynomials Reproduction

LI Zhao-hong, ZHENG Hong-chan, LIAN Hui-fen and JIN Ming-ya   

  • Online:2018-03-15 Published:2018-11-13

摘要: 通过引入新的形状控制参数,提出一类可以精确插值混合型指数多项式的非静态插值细分法。其基本思想是,通过生成指数多项式空间的指数B样条细分法,得到具有相同空间再生性的插值细分法。与具有相同再生性的其他插值细分法相比,所提细分法具有更小的支撑与更大的自由度。从理论上对细分法的再生性进行了分析,并进一步通过图例分析了初始形状控制参数及自由参数对极限曲线的影响。最后展示了取特殊的初始形状控制参数时,所提细分法对于一些特殊曲线的再生性。

关键词: 非静态,插值细分法,再生性,指数多项式,指数B样条

Abstract: By introducing new shape control parameter,this paper presented a family of unified interpolatory subdivision schemes which can accurately interpolate mixed and high-order exponential polynomials.The basic idea is to obtain new interpolatory subdivision schemes with the same spare reproducing through generating exponential B-spline subdivision schemes exponential polynomial space.These schemes have smaller support and greater freedom degree than other schemes with the same reproduction.This paper analyzed the reproduction property of the interpolatory schemes in theo-ry.Finally,the influence of initial shape control parameters and free parameters on the limit curve was analyzed.For specific initial control parameter,the presented schemes can be used to reproduce some special curves which are represented by mixed and high-order exponential polynomials.This paper further showed that variety of schemes will be obtained by choosing different free parameters.

Key words: Non-stationary,Interpolatory subdivision schemes,Reproduction,Exponential polynomials,Exponential B-spline

[1] BECCARI C,CASCIOLA G,ROMANI L.A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics[J].Computer Aided Geometric Design,2007,24:1-9.
[2] ROMANI L.From approximating subdivision schemes for exponential splines to high-performance interpolating algorithms[J].Journal of Computational and Applied Mathematics,2009,224(1):383-396.
[3] CONTI C,ROMANI L.Algebraic conditions on non-stationary subdivision symbols for exponential polynomial reproduction[J].Journal of Computational and Applied Mathematics,2011,236:543-556.
[4] NOVARA P,ROMANI L.Building blocks for designing arbitrarily smooth subdivision schemes with conic precision[J].Journal of Computational and Applied Mathematics,2015,279:67-79.
[5] DUBUC S.Interpolation through an iterative scheme[J].Journal of Mathematical Analysis and Applications,1986,114:185-204.
[6] CONTI C,GEMIGNANI L,ROMANI L.Exponential pseudo-splines:Looking beyond exponential B-splines[J].Journal of Computational and Applied Mathematics,2016,439:32-56.
[7] DYN N,LEVIN D.Analysis of asymptotically equivalent binary subdivision schemes[J].Journal of Computational and Applied Mathematics,1995,193(2):594-621.
[8] JEONG B,LEE Y J,YOON J,et al.A family of non-stationary subdivision schemes reproducing exponential polynomials[J].Journal of Mathematical Analysis and Applications,2013,402(1):207-219.
[9] CHARINA M,CONTI C,ROMANI L.Reproduction of exponential polynomials by multivariate non-stationary subdivision schemes with a general dilation matrix[J].Numerische Mathe-matik,2014,127(2):223-254.
[10] JEONG B,KIM H,LEE Y J,et al.Exponential polynomial reproducing property of non-stationary symmetric subdivision schemes and normalized exponential B-splines[J].Advances in Computational Mathematics,2013,38:647-666.
[11] LI B J,YU Z L,YU B W,et al.Non-stationary Subdivision for Exponential Polynomials Reproduction[J].Acta Mathematicae Applicatae Sinica(English Series),2013,29(3):567-578.
[12] YU B W.A Family of Subdivision Schemes for Exponential Po-lynomials Reproduction[D].Dalian:Dalian University of Technology,2008.(in Chinese) 郁博文.一类重构指数多项式的细分方法[D].大连:大连理工大学,2008.
[13] LI B J.Construction of Exponentials Reproducing Subdivision Schemes and Rapid Evaluation of Interpolatory Subdivision Surfaces[D].Dalian:Dalian University of Technology,2009.(in Chinese) 李宝军.指数多项式曲线细分重构与插值细分曲面快速计算[D].大连:大连理工大学,2009.
[14] DYN N,LEVIN D,LUZZATTO.Exponentials reproducing subdivision schemes[J].Foundations of Computational Mathema-tics,2003,3:187-206.
[15] DYN N,HORMANN K,SABIN M,et al.Polynomial reproduction by symmetric subdivision schemes[J].Journal of Approximation Theory,2008,15:28-42.
[16] ROMAN S.The formula of Faà di Bruno[J].American Mathematical Monthly,1980,10:805-809.
[17] CONTI C,ROMANI L,YOON J.Approximation order and approximate sum rules in subdivision[J].Journal of Approximation Theory,2016,207(C):380-401.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .