计算机科学 ›› 2019, Vol. 46 ›› Issue (7): 315-321.doi: 10.11896/j.issn.1002-137X.2019.07.048
宋健,方贤文,王丽丽
SONG Jian,FANG Xian-wen,WANG Li-li
摘要: 在业务流程挖掘过程中,过程挖掘的目的是从事件日志中挖掘出满足人们需要的模型,以此来改善和优化过程模型。以往的研究都是从频繁日志中挖掘模型,将低频日志直接删除,该类方法使得挖掘的模型不完整,且在行为上会引发死锁或其他异常情况。文中提出基于流程切的过程模型挖掘方法,该方法从事件日志中挖掘过程模型,对事件日志采用流程切的形式进行分割,不仅考虑到频繁行为,还考虑了低频模式下的行为;尤其针对异常的环状结构会引起流程图的边缘结构发生异常的问题,流程切可以很好地进行处理。利用这种方法得到的模型比较全面完善,能够提高有效性和精确度。利用评价指标对构建的模型进行优化,从而得出最优模型。最后,通过具体事例验证了所提方法的有效性。
中图分类号:
[1] | VAN DER AALST W,WEIJTERS T,MARUSTER L.Workflow mining:discovering process models from event logs[J].IEEE Transactions on Knowledge & Data Engineering,2004,16(9):1128-1142.<br /> |
[2] | VAN DER AALST W M P.Process Mining:Discovery,Con- formance and Enhancement of Business Processes[M].Springer Publishing Company,Incorporated,2011.<br /> |
[3] | VAN DER AALST W M P,VAN DONGEN B F,HERBST J,et al.Workflow mining:a survey of issues and approaches[J].Data & Knowledge Engineering,2003,47(2):237-267.<br /> |
[4] | VAN DER AALST W M P,WEIJTERS A.Process mining:a research agenda[J].Computers in Industry,2004,53(3):231-244.<br /> |
[5] | CONFORTI R,ROSA M L,HOFSTEDE A H M T.Filtering Out Infrequent Behavior from Business Process Event Logs[J].IEEE Transactions on Knowledge & Data Engineering,2017,29(2):300-314.<br /> |
[6] | EICHST DT S,LINK A,HARRIS P,et al.Efficient implementation of a Monte Carlo method for uncertainty evaluation in dynamic measurements[J].Metrologia,2012,49(3):401.<br /> |
[7] | POURMASOUMI A,KAHANI M,BAGHERI E.Mining variable fragments from process event logs[J].Information Systems Frontiers,2017,19(6):1423-1443.<br /> |
[8] | WEN L,VAN DER AALST W M P,WANG J,et al.Mining process models with non-free-choice constructs[J].Data Mining and Knowledge Discovery,2007,15(2):145-180.<br /> |
[9] | BUSI N,PINNA G,VAN DER AALST W.An Iterative Algorithm for Applying the Theory of Regions in Process Mining[R].Department of Technology Management,Eindhoven University of Technology,2007:16-38.<br /> |
[10] | YZQUIERDO-HERRERA R,SILVERIO-CASTRO R,LAZO- CORT S M.Sub-process discovery:opportunities for process diagnotics[M]∥Enterprise Information Systems of the Future.Berlin Heidelberg:Springer,2013:48-57.<br /> |
[11] | BOUSHABA S,KABBAJ M I,BAKKOURY Z.Process disco- very:Automated approach for block discovery[C]∥2014 International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE).IEEE,2014:1-8.<br /> |
[12] | CHAPELA-CAMPA D,MUCIENTES M,LAMA M.Discovering Infrequent Behavioral Patterns in Process Models[C]∥International Conference on Business Process Management.Springer,Cham,2017:324-340.<br /> |
[13] | 吴哲辉.Petri网理论[M].北京:机械工业出版社,2006:6-22.<br /> |
[14] | WEIDLICH M,POLYVYANYY A,DESAI N,et al.Process Compliance Measurement Based On Behavioral Profiles [J].Advanced Information Systems Engineering,2010,6051:499-514.<br /> |
[15] | KUNZE M,WEIDLICH M,WESKEM.Querying process mo- dels by behavior inclusion[J].Software & Systems Modeling,2015,14(3):1105-1125.<br /> |
[16] | WEIDLICH M,MENDLING J,WESKE M.Efficient Consistency Measurement Based on Behavioural Profiles of Process Mo-dels[J].IEEE Transactions on Software Engineering,2011,37(3):410-429. |
[1] | 杨皓然, 方贤文. 基于概率和时间因素的Petri网业务流程一致性分析[J]. 计算机科学, 2020, 47(5): 59-63. |
[2] | 李娟,方贤文,王丽丽,刘祥伟. 基于日志自动机的业务流程混沌活动过滤方法[J]. 计算机科学, 2020, 47(1): 66-71. |
[3] | 孙书亚, 方欢, 方贤文. 日志诱导下的形态学片段流程聚类方法[J]. 计算机科学, 2019, 46(8): 71-77. |
[4] | 苏庆,林昊,黄剑锋,何凡,林志毅. 基于Petri网编码的动态图水印技术研究[J]. 计算机科学, 2019, 46(7): 120-125. |
[5] | 郝惠晶, 方贤文, 王丽丽, 刘祥伟. 基于Petri网行为紧密度的有效低频行为模式分析[J]. 计算机科学, 2019, 46(2): 321-326. |
[6] | 宋健, 方贤文, 王丽丽, 刘祥伟. 基于行为轮廓的业务流程隐变迁挖掘方法[J]. 计算机科学, 2019, 46(12): 334-340. |
[7] | 曹蕊, 方贤文, 王丽丽. 基于通讯行为轮廓挖掘条件非频繁行为的方法[J]. 计算机科学, 2018, 45(8): 310-314. |
[8] | 何路路, 方欢. 带数据流的面向服务的业务流程模型变化传播Petri网方法[J]. 计算机科学, 2018, 45(6A): 545-548. |
[9] | 赵培海, 王咪咪. 基于三维行为关系图的模型一致性检测方法[J]. 计算机科学, 2018, 45(6): 156-160. |
[10] | 高雅楠,方贤文,王丽丽. 基于Petri网行为紧密度的业务流程配置优化分析[J]. 计算机科学, 2017, 44(Z6): 539-542. |
[11] | 周杰,李文敬. 基于三层混合编程模型的Petri网并行算法研究[J]. 计算机科学, 2017, 44(Z11): 586-591. |
[12] | 林雷蕾,周华,代飞,何臻力,沈勇,康洪炜. 一种基于代数语义的软件体系结构求精方法[J]. 计算机科学, 2017, 44(7): 141-146. |
[13] | 宋振华,张广泉. 基于AOP的时空Petri网的CPS建模[J]. 计算机科学, 2017, 44(7): 38-41. |
[14] | 宋相君,张广泉. 基于扩展混成Petri网的CPS无人车系统建模与分析[J]. 计算机科学, 2017, 44(7): 21-24. |
[15] | 赵娜,王剑,李彤,郁涌,李鹏,谢仲文. 面向对象的可信构件网的组装研究[J]. 计算机科学, 2017, 44(11): 104-108. |
|