计算机科学 ›› 2019, Vol. 46 ›› Issue (11): 80-87.doi: 10.11896/jsjkx.181001925

• 网络与通信 • 上一篇    下一篇

扩散的多播分子通信网络的比特错误率分析

程珍, 赵慧婷, 章益铭, 林飞   

  1. (浙江工业大学计算机科学与技术学院 杭州310023)
  • 收稿日期:2018-10-16 出版日期:2019-11-15 发布日期:2019-11-14
  • 通讯作者: 程珍(1981-),女,博士,副教授,CCF会员,主要研究方向为分子通信与纳米网络,E-mail:chengzhen@zjut.edu.cn
  • 作者简介:赵慧婷(1992-),女,硕士,主要研究方向为分子通信与纳米网络;章益铭(1993-),硕士生,主要研究方向为分子通信与纳米网络;林飞(1992-),硕士,主要研究方向为分子通信与纳米网络。
  • 基金资助:
    本文受国家自然科学基金(61472367),浙江省自然科学基金(LY19F020090)资助。

Bit Error Rate Analysis of Diffusion-based Multicast Molecular Communication Networks

CHENG Zhen, ZHAO Hui-ting, ZHANG Yi-ming, LIN Fei   

  1. (College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China)
  • Received:2018-10-16 Online:2019-11-15 Published:2019-11-14

摘要: 考虑到多播分子通信网络由1个发送方纳米机器、2个接收方纳米机器和4个中继纳米机器组成,提出通过每跳采用同种类型和不同类型的分子来传输信息的中继策略,以保证多播分子通信的可靠性。首先,提出调整阈值的方式来有效减少并行中继纳米机器间发送相同类型分子时的干扰;然后,推导出两种中继策略下多播分子通信网络平均比特错误率的数学表达式;最后,通过实验仿真展示了不同参数(包括检测阈值、每个时隙发送的分子数、发送方和接收方纳米机器间的距离、样本个数、比特间隔时长以及扩散系数)对多播分子通信网络的比特错误率的影响,并提出了可降低该多播分子通信网络的平均比特错误率的中继方案。

关键词: 扩散的, 分子通信网络, 多播, 比特错误率

Abstract: Considering a multicast molecular communication network consisting of one transmitter nanomachine,two receiver nanomachines,and four nanomachines acting as relays,this paper proposed two different relay schemes using the same type and different types of molecules in each hop to transmit information to ensure the reliability of the multicast molecular communication.First,the method for adjusting the decision threshold as an effective mechanism is proposed to mitigate interference when transmitting the same type of molecules between parallel relay nanomachines.Then,mathematical expressions for the average bit error rate of the multicast molecular communication network for both relay schemes are derived.Finally,the simulation results show that different parameters have impacts on the average bit error rate of the multicast molecular communication network,including decision threshold,the number of molecules emitted in each time slot,the distance between transmitter nanomachine and receiver nanomachine,the number of samples,bit interval duration and diffusion coefficient.And a relay scheme which can reduce the average bit error rate of this network was proposed.

Key words: Diffusive, Molecular communication networks, Multicast, Bit error rate

中图分类号: 

  • TP391.9
[1] WANG J,YIN B,PENG M.Diffusion based molecular communication:principle,key technologies,and challenges[J].China Communications,2017,14(2):1-18.
[2] FARSAD N,YILMAZ H B,ECKFORD A,et al.A comprehensive survey of recent advancements in molecularcommunication[J].IEEE Communications Surveys & Tutorials,2017,18(3):1887-1919.
[3] NAKANO T,MOORE M J,WEI F,et al.Molecular communication and networking:opportunities and challenges[J].IEEE Transactions on Nanobioscience,2012,11(2):135-148.
[4] LLATSER I,CABELLOS-APARICIO A,ALARCON E.Networking challenges and principles in diffusion-based molecular communication[J].IEEE Wireless Communications,2012,19(5):36-41.
[5] LI Z P,ZHANG J,CAI S B,et al.Review on molecular communication[J].Journal on Communications,2013,34(5):152-167.(in Chinese)黎作鹏,张菁,蔡绍滨,等.分子通信研究综述[J].通信学报,2013,34(5):152-167.
[6] MOVAHEDNASAB M,SOLEIMANIFAR M,GOHARI A,etal.Adaptive molecule transmission rate for diffusion based molecular communication[C]∥IEEE International Conference on Communications.London,2015:181-184.
[7] WALSH F,BALASUBRAMANIAM S.Reliability and delay analysis of multihop virus-based nanonetworks[J].IEEE Transactions on Nanotechnology,2013,12(5):674-684.
[8] EINOLGHOZATI A,SARDARI M,FEKRI F.Relaying in diffusion-basedmolecular communication[C]∥IEEEInternational Symposium on Information Theory Proceedings.Istanbul,Turkey,2013:1844-1848.
[9] WANG X,HIGGINS M D,LEESON M S.Relay Analysis in molecular communications with time-dependent concentration[J].IEEE Communications Letters,2015,19(11):1977-1980.
[10] DENG Y,NOEL A,ELKASHLAN M,et al.Modeling and simulation of molecular communication systems with a reversible adsorption receiver[J].IEEE Transactions on Molecular,Biolo-gical and Multi-Scale Communications,2016,1(4):347-362.
[11] AHMADZADEH A,NOEL A,SCHOBER R.Analysis and design of multi-hop diffusion-based molecular communication networks[J].IEEE Transactions on Molecular,Biological and Multi-Scale Communications,2016,1(2):144-157.
[12] CHENG Z,ZHU Y H,CHI K K,et al.Reliability and delayanalysis of multicast in binary molecular communication[J].Nano Communication Networks,2016,9(1):17-27.
[13] TIWARI S K,UPADHYAY P K.Estimate-and-forward relaying in diffusion-based molecular communication networks:performance evaluation and threshold optimization[J].IEEE Transactions on Molecular,Biological and Multi-Scale Communications,2017,3(3):183-193.
[14] TAVAKKOLI N,AZMI P,MOKARI N.Performance evaluation and optimal detection of relay-assisted diffusion-based molecular communication with drift[J].IEEE Transactions on Nanobioscience,2017,16(1):34-42.
[15] YIN B N,PENG M G.Performance analysis of cooperative relaying in diffusion-based molecular communication[C]∥International Conference on Computing,Networking and Communications.2018:752-756.
[16] YUAN S,WANG J X,PENG M G.Performance analysis of reversible binding receptor based decode-and-forward relay in molecular communication systems[J].IEEE Wireless Communications Letters,2018,7(5):880-883.
[1] 池凯凯, 汤泽锋, 祝驿楠, 邵奇可. 无线蜂窝网中用于D2D多播簇的高效多播方案[J]. 计算机科学, 2019, 46(1): 169-174.
[2] 于振超, 刘锋, 曾连荪. BC单播与BC多播并存的多用户网络分析[J]. 计算机科学, 2018, 45(10): 120-123.
[3] 钱晓捷,王超. 基于Raptor码的视频多播跨层优化算法[J]. 计算机科学, 2016, 43(8): 50-54.
[4] 池凯凯,戴志泉,李燕君,程珍. 能量捕获无线传感网的信道质量和能量感知高传递率多播方案[J]. 计算机科学, 2015, 42(Z11): 263-267.
[5] 韩莉,钱焕延,刘慧婷. 无线多跳网络上基于网络编码的多源多播算法[J]. 计算机科学, 2015, 42(10): 88-91.
[6] 张峰,贾智平,蔡晓军,张兰华. 基于精英的量子粒子群优化的Ad hoc能耗研究[J]. 计算机科学, 2014, 41(9): 132-136.
[7] 李渊,杨立波. 基于最优能耗多播树构造的Ad hoc网络节点路由算法研究[J]. 计算机科学, 2013, 40(4): 115-118.
[8] 韩冰青,陈 伟,张 宏. 支持多速率多播的Ad hoc网络资源分配算法[J]. 计算机科学, 2012, 39(12): 55-59.
[9] 韩莉,钱焕延. 网络编码用于无线网络流媒体多播的优势分析[J]. 计算机科学, 2011, 38(Z10): 257-259.
[10] 吴伟民,江小威,朱光喜,高有军. LTE中MBMS服务DSI设计[J]. 计算机科学, 2011, 38(2): 91-94.
[11] 张立冬,覃光成,李臻,尹浩. 网络编码在实时战术数据多播中的应用[J]. 计算机科学, 2010, 37(1): 138-141.
[12] 周国瑞,孙世新,王文江. 抗共谋数字指纹实现问题研究[J]. 计算机科学, 2010, 37(1): 28-33.
[13] . 基于域饱和度的二维应用层多播模型[J]. 计算机科学, 2009, 36(3): 69-73.
[14] . 无线mesh网络中效用与链路强度联合优化的覆盖多播[J]. 计算机科学, 2009, 36(3): 51-53.
[15] . 无线网络中一类多播网络的网络编码[J]. 计算机科学, 2008, 35(9): 108-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .