计算机科学 ›› 2020, Vol. 47 ›› Issue (3): 304-311.doi: 10.11896/jsjkx.190200369

• 信息安全 • 上一篇    下一篇

物理层安全星座模糊设计方法的性能研究

奚晨婧,高媛媛,沙楠   

  1. (陆军工程大学通信工程学院 南京210007)
  • 收稿日期:2019-02-27 出版日期:2020-03-15 发布日期:2020-03-30
  • 通讯作者: 高媛媛(njyygao@vip.sina.com)
  • 基金资助:
    国家自然科学基金项目(61501511)

Performance Study on Constellation Obfuscation Design Method for Physical Layer Security

XI Chen-jing,GAO Yuan-yuan,SHA Nan   

  1. (Communications Engineering Academy, The Army Engineering University of PLA, Nanjing 210007, China)
  • Received:2019-02-27 Online:2020-03-15 Published:2020-03-30
  • About author:XI Chen-jing,born in 1993,postgradua-te.Her main research interests include physical layer security and so on. GAO Yuan-yuan,born in 1968,Ph.D,professor.Her main research interests include physical layer security and physical layer network.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (61501511).

摘要: 物理层安全加密技术是一种有效保证信息安全传输的物理层安全方法。此技术通过相位旋转、调制星座多样性、符号模糊、幅度调节和符号顺序变化等手段设计信号星座,保护调制方式与调制符号信息。现有的物理层安全加密技术存在密钥共享不保密和星座模糊度不足等缺点。多符号模糊(Mutiple Inter-symbol Obfuscation,MIO)方案采用人工噪声符号密钥与已调符号矢量叠加的加密方法来解决星座模糊度不足的问题。受MIO的启发,文中将信道系数与已调符号矢量叠加,提出了一种基于星座模糊设计(Constellation Obfuscatio Design,COD)的物理层安全加密方案。在TDD模式和信道互易的条件下,将合法信道的信道系数作为密钥,来解决密钥预分享不保密的问题。文中详细介绍了发端加密与合法接收端解密的完整传输过程,并针对高阶累积量的调制识别和智能攻击型窃听者进行接收处理分析;推导出瑞利衰落信道下的合法接收端误码率理论公式;对合法接收端、高阶累积量的调制识别窃听端和智能攻击型窃听端的误码率进行仿真,并对比了MIO方案合法接收端、窃听端的性能。仿真结果显示:合法接收端误码率为1×10-4时,COD方案的信噪比比MIO方案的低6dB;对COD方案加密后,当信噪比为0时,调制识别成功率为11.8%,调制识别成功率最高可达25%且在信噪比大于40dB后保持稳定;前3个数据包中,COD方案智能攻击型窃听端的误码率始终为0.284,知晓起始密钥的MIO方案窃听端的误码率则较低;信噪比在0~54dB范围内时,合法接收端的误码率性能始终优于调制识别窃听端和智能攻击型窃听端。因此,所提COD方案能够保障安全通信,抵御调制识别和智能攻击型窃听者的攻击,并且COD方案的有效性和可靠性均优于MIO方案。

关键词: 调制, 物理层安全, 物理层安全加密, 星座模糊, 星座映射

Abstract: Physical layer security encryption technology is an effective physical layer security method to ensure the safe transmission of information.The signal constellation is designed by means of phase rotation,modulation constellation diversity,symbol obfuscation,amplitude adjustment and symbol sequence change to protect modulation mode and modulation symbol information.The existing physical layer security encryption technology has some disadvantages,such as unclassified key sharing and insufficient constellation ambiguity.The MIO scheme adoptes the encryption method of superposition of artificial noise symbol key andmo-dulated symbol vector to solve the problem of insufficient constellation ambiguity.Inspired by MIO scheme,this paper proposed a new physical layer security encryption scheme based on constellation obfuscation design (COD) by superimposing channel coefficient and modulated symbol vector.Under the condition of TDD mode and channel reciprocity,the channel coefficient of the legitimate channel is used as the key to solve the problem of unclassified key pre-sharing.This paper introduced the complete transmission process of sending-end encryption and legal-end decryption,and analyzed the reception process of high-order cumulant modulation re-cognition and intelligent attack eavesdropper.The theoretical SER (symbol error rate) equation of legitimate receiver in Rayleigh fading channel was derived.Simulation of SER performance of legitimate receiver,high order cumulant modulation re-cognition eavesdropper and intelligent attack eavesdropper were conducted.The performance of the legitimate receiver and eavesdropper of MIO scheme and COD scheme are compared.Simulation results show that when the SER of legitimate receiver is 1×10-4,the SNR(signal-to-noise ratio) of COD scheme is 6dB lower than that of MIO scheme.After the COD scheme is encrypted,when SNR is 0,the success rate of modulation identification is 11.8%,and the highest success rate of modulation identification is 25%,which remains stable after the SNR is greater than 40dB.In the first three data packets,the SER of the COD scheme’s intelligent attack eavesdropping terminal is always 0.284,while that of the MIO scheme’s eavesdropper who knowns the starting key is lower.With the SNR between 0 and 54dB,the SER performance of the legitimate receiver is always better than that of the modulation recognition eavesdropping terminal and the intelligent attack eavesdropping terminal.Therefore,the proposed COD scheme can guarantee the secure communication and resist the attack of modulation recognition and intelligent attack eavesdropper,and the effectiveness and reliability of COD scheme are better than MIO scheme.

Key words: Constellation mapping, Constellation obfuscation, Modulation, Physical layer security, Physical layer security encryption

中图分类号: 

  • TP918.9
[1]SHAFIEE S,ULUKUSS.Achievable rates in Gaussian MISO channels with secrecy constraints[C]∥IEEE International Symposium on Conference:Information Theory,2007(ISIT 2007).IEEE,2007:2466-2470.
[2]KHISTI A,WORNELL G,WIESEL A,et al.On the Gaussian MIMO wiretap channel[C]∥IEEE International Symposium on Conference:Information Theory,2007(ISIT 2007).IEEE,2007:2471-2475.
[3]WANG K,WANG X,ZHANG X.SLNR-based transmit beamforming for MIMO wiretap channel[J].Wireless Personal Communications,2013,71(1):109-121.
[4]LI Q,MAW K.Optimal and robust transmit designs for MISO channel secrecy by semidefinite programming[J].IEEE Tran-sactions on Signal Processing,2011,59(8):3799-3812.
[5]BAGHERIKARAM G,MOTAHARIA S,KHANDANI A K.The secrecy capacity region of the Gaussian MIMO broadcast channel [J].IEEE Transactions on Information Theory,2013,59(5):2673-2682.
[6]NEGI R,GOEL S.Secret communication using artificial noise [C]∥IEEE 62nd Vehicular Technology Conference,2005.IEEE,2005.
[7]LAI L,GAMAL H E.The relay-eavesdropper channel:Cooperation for secrecy [J].IEEE Transactions on Information Theory,2008,54(9):4005-4019.
[8]LUO S,LI J,PETROPULU A.Physical layer security with uncoordinated helpers implementing cooperative jamming[J].ar-Xiv:1202.6596,2012.
[9]DONG L,HAN Z,PETROPULU A P,et al.Improving wireless physical layer security via cooperating relays[J].IEEE Transactions on Signal Processing,2010,58(3):1875-1888.
[10]EKREM E,ULUKUS S.Secrecy in cooperative relay broadcast channels[J].IEEE Transactions on Information Theory,2011,57(1):137-155.
[11]LIU Y,DRAPER S C,SAYEED A M.Exploiting channel diversity in secret key generation from multipath fading randomness[J].IEEE Transactions on Information Forensics and Security,2012,7(5):1484-1497.
[12]AONO T,HIGUCHI K,OHIRA T,et al.Wireless secret key generation exploiting reactance-domain scalar response of multipath fading channels[J].IEEE Transactions on Antennas and Propagation,2005,53(11):3776-3784.
[13]REN K,SU H,WANG Q.Secret key generation exploiting channel characteristics in wireless communications[J].IEEE Wireless Communications,2011,18(4):6-12.
[14]BLOCH M,BARROS J,RODRIGUES M R D,et al.Wireless information-theoretic security[J].IEEE Transactions on Information Theory,2008,54(6):2515-2534.
[15]GOERGEN N,LIN W S,LIU K J R,et al.Extrinsic channel-like fingerprint embedding for authenticating MIMO systems [J].IEEE Transactions on Wireless Communications,2011,10(12):4270-4281.
[16]COBB W E,LASPE E D,BALDWIN R O,et al.Intrinsic physi- cal-layer authentication of integrated circuits [J].IEEE Tran-sactions on Information Forensics & Security,2015.
[17]MARTINIAN E,WORNELLG W,CHEN B.Authentication with distortion criteria[J].IEEE Transactions on Information Theory,2005,51(7):2523-2542.
[18]MA R,DAI L,WANG Z,et al.Secure communication in TDS-OFDM system using constellation rotation and noise insertion[J].IEEE Transactions on Consumer Electronics,2010,56(3):1328-1332.
[19]HAN C G,HASHIMOTO T,SUEHIRO N.Constellation-rota- ted vector OFDM and its performance analysis over rayleigh fading channels [J].IEEE Transactions on Communications,2010,58(3):828-838.
[20]PÖPPER C,TIPPENHAUER N O,DANEV B,et al.Investigation of Signal and Message Manipulations on the Wireless Channel[C]∥European Conference on Research in Computer Security.Springer-Verlag,2011:40-59.
[21]CHEN B,ZHU C S,LI W,et al.Original Symbol Phase Rotated Secure Transmission Against Powerful Massive MIMO Eavesdropper[J].IEEE Access,2017,4:3016-3025.
[22]XU Z,YUAN T,GONG Y,et al.Achieving secure communica- tion through random phase rotation technique[C]∥Wireless Communications & Mobile Computing Conference.IEEE,2017.
[23]ALTHUNIBAT,SUCASAS V,RODRIGUEZ J.A Physical Layer Security Scheme by Phase-Based Adaptive Modulation[J].IEEE Transactions on Vehicular Technology,2017,66(11):9931-9942.
[24]HUSAIN M I,MAHANT S,SRIDHAR R.CD-PHY:Ph-ysical layer security in wireless networks through constellation diversity [J].arXiv:1108.5148,2012.
[25]MA R,WANG Z,YANG Z.Improving physical layer security using APSK constellations with finite-alphabet inputs [C]∥2013 9th International Wireless Communications and Mobile Computing Conference (IWCMC).2013:149-152.
[26]ZANG G,HUANG B,CHEN L,et al.One trans-mission scheme based on variable MSK modulator for wireless physical layer security[C]∥2015 International Conference on Wireless Communications & Signal Processing (WCSP).2015:1-5.
[27]MAO X N,LIN K J,LIU H.A physical layer security algorithm based on constellation[C]∥International Conference on Communication Technology.IEEE,2018.
[28]HUANG Y,EL-HAJJAR M.Mohammed Multi-dimensional en- cryption scheme based on physical layer for fading channel[J].IET Communications,2018,12(9):2470-2477.
[29]LEI B B.Research on Protection Algorithms of Modulation Mode Based on Physical Layer Encryption[D].Xi’an:Northwest University,2012.
[30]XIONG T,LOU W,ZHANG J,et al.MIO:Enhancing Wireless Communications Security Through Physical Layer Multiple Inter-Symbol Obfuscation [J].IEEE Transactions on Information Forensics and Security,2015,10(8):1678-1691.
[31]PROAKIS J G,MASOUD S.Digital Communications:Fifth Edition[M].Electronic Industry Press,2012.
[1] 焦翔, 魏祥麟, 薛羽, 王超, 段强.
基于深度学习的自动调制识别研究
Automatic Modulation Recognition Based on Deep Learning
计算机科学, 2022, 49(5): 266-278. https://doi.org/10.11896/jsjkx.211000085
[2] 赵耿, 宋鑫宇, 马英杰.
混沌子载波调制的无人机安全数据链路
Secure Data Link of Unmanned Aerial Vehicle Based on Chaotic Sub-carrier Modulation
计算机科学, 2022, 49(3): 322-328. https://doi.org/10.11896/jsjkx.210200022
[3] 王超, 魏祥麟, 田青, 焦翔, 魏楠, 段强.
基于特征梯度的调制识别深度网络对抗攻击方法
Feature Gradient-based Adversarial Attack on Modulation Recognition-oriented Deep Neural Networks
计算机科学, 2021, 48(7): 25-32. https://doi.org/10.11896/jsjkx.210300299
[4] 丁青锋, 奚韬, 连义翀, 吴泽祥.
基于物理层安全的空间调制系统天线选择算法
Antenna Selection for Spatial Modulation Based on Physical Layer Security
计算机科学, 2020, 47(7): 322-327. https://doi.org/10.11896/jsjkx.190600133
[5] 陈晋音, 成凯回, 郑海斌.
低信噪比下基于深度学习的调制模式识别方法
Deep Learning Based Modulation Recognition Method in Low SNR
计算机科学, 2020, 47(6A): 283-288. https://doi.org/10.11896/JsJkx.190800072
[6] 陈晋音, 蒋焘, 郑海斌.
基于信噪比分级的信号调制类型识别
Radio Modulation Recognition Based on Signal-noise Ratio Classification
计算机科学, 2020, 47(6A): 310-317. https://doi.org/10.11896/JsJkx.190800073
[7] 陈佩佩, 李陶深, 方兴, 王哲.
能量收集全双工中继系统中的安全波束成形研究
Study on Secure Beamforming for Full-duplex Energy Harvesting Relaying System
计算机科学, 2020, 47(6): 316-321. https://doi.org/10.11896/jsjkx.190500115
[8] 徐茂,侯进,吴佩军,刘雨灵,吕志良.
基于通信信号时频特性的卷积神经网络调制识别
Convolutional Neural Networks Based on Time-Frequency Characteristics for Modulation Classification
计算机科学, 2020, 47(2): 175-179. https://doi.org/10.11896/jsjkx.181202361
[9] 彭磊, 臧国珍, 高媛媛, 沙楠, 奚晨婧, 蒋炫佑.
LMS自适应干扰消除在基于人工干扰的物理层安全通信系统中的应用研究
Research and Application of LMS Adaptive Interference Cancellation in Physical Layer SecurityCommunication System Based on Artifical Interference
计算机科学, 2019, 46(6): 168-173. https://doi.org/10.11896/j.issn.1002-137X.2019.06.025
[10] 邹鹏, 谌雨章, 陈龙彪, 曾张帆.
基于神经网络的光照分布预测夜视复原算法
Night Vision Restoration Algorithm Based on Neural Network for Illumination Distribution Prediction
计算机科学, 2019, 46(11A): 329-333.
[11] 于秀兰, 王思仪.
基于Ka频段的低轨卫星自适应信息传输方案
Adaptive Information Transmission Scheme for LEO Satellite Based on Ka Band
计算机科学, 2019, 46(11): 72-79. https://doi.org/10.11896/jsjkx.181001862
[12] 蒋炫佑, 魏以民, 王雷, 刘灵君, 彭磊.
逼近高斯信道容量的M-APSK调制与解调方法
M-APSK Signal Modulation and Demodulation Method Approaching Gaussian Channel Capacity
计算机科学, 2019, 46(10): 97-102. https://doi.org/10.11896/jsjkx.180901777
[13] 陈贵平,王子牛.
基于大数据分析的用户信息多重加密存储技术
Multiple Encrypted Storage Technology of User Information Based on Big Data Analysis
计算机科学, 2018, 45(7): 150-153. https://doi.org/10.11896/j.issn.1002-137X.2018.07.025
[14] 刘丹,马秀荣,单云龙.
一种基于ST-RFT算法的数字调制信号识别方法
Digital Modulation Signal Recognition Method Based on ST-RFT Algorithm
计算机科学, 2018, 45(5): 64-68. https://doi.org/10.11896/j.issn.1002-137X.2018.05.011
[15] 高宝建, 王少迪, 任宇辉, 王玉洁.
基于无线OFDM系统的调制方式保护算法
Modulation Protection Algorithm Based on Wireless OFDM Systems
计算机科学, 2018, 45(10): 64-68. https://doi.org/10.11896/j.issn.1002-137X.2018.10.013
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!