计算机科学 ›› 2019, Vol. 46 ›› Issue (11): 260-266.doi: 10.11896/jsjkx.190400159
刘佩1, 贾建1,2, 陈莉1, 安影1
LIU Pei1, JIA Jian1,2, CHEN Li1, AN Ying1
摘要: 为了能够对图像进行自适应的分解,并准确刻画分解系数的分布状态,提出了一种新的基于快速自适应二维经验模态分解的图像去噪算法。该算法首先对图像进行快速自适应二维经验模态分解,通过确定分解后以噪声主导的子带的个数,进一步利用正态逆高斯模型对以噪声主导的子带系数分布进行建模;然后使用贝叶斯最大后验概率估计理论从模型导出相应的阈值;最后采用最优线性插值阈值函数算法完成去噪。仿真结果表明,对于添加不同标准差大小高斯白噪声的测试图像,所提算法在峰值信噪比上相比sym4小波去噪、双变量阈值去噪、邻近算子的全变分算法和重叠组稀疏的全变分算法分别平均提高了4.36dB,0.85dB,0.78dB和0.48dB,结构相似性指数也有不同程度的提高,有效地保留了更多的图像细节。实验结果证明,所提算法在视觉性能和评价指标方面均优于对比算法。
中图分类号:
[1] | SUN X X,QU W.Comparison between mean filter and median filter algorithm in image denoising field[C]∥Applied Mechanics and Materials.Trans Tech Publications,2014,644:4112-4116. |
[2] | PUSHPAVALLI R,SRINIVASAN E.Decision based switching median filtering technique for image denoising[J].CiiT International Journal of Digital Image Processing,2010,2(10):405-410. |
[3] | ABHARI K,MARSOUSI M,BABYN P,et al.Medical image denoising using low pass filtering in sparse domain[C]∥2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.NJ:IEEE,2012:114-117. |
[4] | BUADES A,COLL B,MOREL J M.A non-local algorithm for image denoising[C]∥2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05).Washington DC:IEEE,2005,2:60-65. |
[5] | DABOV K,FOI A,KATKOVNIK V,et al.BM3D image denoising with shape-adaptive principal component analysis[C]∥Signal Processing with Adaptive Sparse Structured Representations.Saint Malo,France,2009. |
[6] | MALLAT S.A wavelet tour of signal processing[M].Elsevier,1999. |
[7] | RAN X Y,YE J Y,GUO C H.Image denoising method based on two-dimensional empirical mode and mean filtering[J].Journal of Computer Applications,2008,28(11):2884-2886. |
[8] | ABHARI K,MARSOUSI M,BABYN P,et al.Medical image denoising using low pass filtering in sparse domain∥2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Piscataway,NJ:IEEE Press,2012:114-117. |
[9] | ARFIA F B,SABRI A,MESSAOUD M B,et al.The bidimensional empirical mode decomposition with 2D-DWT for gaussian image denoising[C]∥2011 17th International Conference on Digital Signal Processing (DSP).Piscataway,NJ:IEEE Press,2011:1-5. |
[10] | PEI Y,WU Y,JIA D.Image denoising based on bidimensional empirical mode decomposition[C]∥2011 International Conference on Mechatronic Science,Electric Engineering and Computer (MEC).Piscataway,NJ:IEEE Press,2011:1122-1125. |
[11] | BHUIYAN S M A,ADHAMI R R,KHAN J F.A novel approach of fast and adaptive bidimensional empirical mode decomposition∥2008 IEEE International Conference on Acoustics,Speech and Signal Processing.Piscataway,NJ:IEEE Press,2008:1313-1316. |
[12] | CHEN L,WANG K,MENG Q Y,et al.Application of Two-Dimensional Empirical Mode Decomposition Method in Magnetic Flux Leakage Image Processing[J].Laboratory Research and Exploration,2012,31(6):28-31. |
[13] | LAHMIRI S.Image denoising in bidimensional empirical mode decomposition domain:the role of Student’s probability distribution function[J].Healthcare technology letters,2015,3(1):67-71. |
[14] | AN F P,LIN D C,ZHOU X W,et al.Enhancing image denoising performance of bidimensional empirical mode decomposition by improving the edge effect[J].International Journal of Antennas and Propagation,2015,2015(12):1-12. |
[15] | LIU D,CHEN X.Image denoising based on improved bidimensional empirical mode decomposition thresholding technology[J].Multimedia Tools and Applications,2019,76(8):7381-7417. |
[16] | BHUIYAN S M A,ADHAMI R R,KHAN J F.Fast and Adaptive Bidimensional Empirical Mode Decomposition Using Order-Statistics Filter Based Envelope Estimation [J].Eurasip Journal on Advances in Signal Processing,2008,2008(164):1-18. |
[17] | BHUIYAN S M A,ADHAMI R R,KHAN J F.A novel approach of fast and adaptive bidimensional empirical mode decomposition[C]∥2008 IEEE International Conference on Acoustics,Speech and Signal Processing.Piscataway,NJ:IEEE Press,2008:1313-1316. |
[18] | BARNDORFF-NIELSEN O E.Normal inverse Gaussian distributions and stochastic volatility modelling[J].Scandinavian Journal of statistics,1997,24(1):1-13. |
[19] | FATHI A,NAGHSH-NILCHI A R.Efficient image denoisingmethod based on a new adaptive wavelet packet thresholding function[J].IEEE Transactions on Image Processing,2012,21(9):3981-3990. |
[20] | CHANG S G,YU B,VETTERLI M.Adaptive wavelet thresholding for image denoising and compression[J].IEEE Transactions on Image Processing,2000,9(9):1532-1546. |
[21] | LIU J,HUANG T Z,SELESNICK I W,et al.Image restoration using total variation with overlapping group sparsity[J].Information Sciences,2015,295(a):232-246. |
[22] | MICCHELLI C A,SHEN L,XU Y.Proximity algorithms forimage models:denoising[J].Inverse Problems,2011,27(4):045009. |
[23] | WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:from error visibility to structural similarity[J].IEEE transactions on image processing,2004,13(4):600-612. |
[24] | ZHANG X.A Method for Image Denoising Based on Normal Inverse Gaussian Model Using Bayesian Estimation [J].Acta Optica Sinica,2010,30(1):70-74. |
[25] | JIA J,CHEN L.Image Denoising of Nonsubsampled Contourlet Transform Based on Normal Inverse Gaussian Model[J].Chinese Journal of Electronics,2011,39(7):1563-1568. |
[26] | LAN X Y,CHEN L,JIA J,et al.Image denoising algorithmbased on improved normal inverse Gaussian distribution model[J].Journal of Computer Applications,2017,34(10):3188-3192. |
[27] | BHUIYAN M I H,AHMAD M O,SWAMY M N S.Wavelet-based despeckling of medical ultrasound images with the symmetric normal inverse Gaussian prior[C]∥2007 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP’07).Piscataway,NJ:IEEE Press,2007:I-721-I-724. |
[1] | 吴静, 周先春, 徐新菊, 黄金. 三维块匹配波域调和滤波图像去噪[J]. 计算机科学, 2020, 47(7): 130-134. |
[2] | 曹义亲, 谢舒慧. 基于网格搜索的特定类别图像去噪算法[J]. 计算机科学, 2020, 47(11): 168-173. |
[3] | 李桂会,李晋江,范辉. 自适应匹配追踪图像去噪算法[J]. 计算机科学, 2020, 47(1): 176-185. |
[4] | 肖佳, 张俊华, 梅礼晔. 改进的三维块匹配去噪算法[J]. 计算机科学, 2019, 46(6): 288-294. |
[5] | 张真真,王建林. 结合第二代Bandelet变换分块的字典学习图像去噪算法[J]. 计算机科学, 2018, 45(7): 264-270. |
[6] | 赵杰,马玉娇,刘帅奇. 结合视觉显著性的图像去噪优化算法[J]. 计算机科学, 2018, 45(2): 312-317. |
[7] | 焦莉娟,王文剑. 一种基于差异系数的稀疏度自适应图像去噪算法[J]. 计算机科学, 2018, 45(2): 94-97. |
[8] | 陈鹏, 张建伟. 结合核函数与非线性偏微分方程的图像去噪方法[J]. 计算机科学, 2018, 45(11): 278-282. |
[9] | 马洪晋, 聂玉峰. 基于二级修复的多方向加权均值滤波算法[J]. 计算机科学, 2018, 45(10): 250-254. |
[10] | 孙少超. 一种非凸核范数最小化一般模型及其在图像去噪中的应用[J]. 计算机科学, 2017, 44(Z6): 236-239. |
[11] | 赵杰,王配配,门国尊. 基于非局部相似和低秩矩阵逼近的SAR图像去噪[J]. 计算机科学, 2017, 44(Z6): 183-187. |
[12] | 张爱玲,李鹏,刘晟. 基于粒子群算法的图像椒盐噪声去除算法[J]. 计算机科学, 2017, 44(8): 301-305. |
[13] | 柯祖福,易本顺,谢秋莹. 基于非局部自相似性的谱聚类图像去噪算法[J]. 计算机科学, 2017, 44(5): 299-303. |
[14] | 郭远华,周贤林. 基于灰度密度和四方向的随机脉冲噪声检测[J]. 计算机科学, 2016, 43(Z11): 220-222. |
[15] | 孙少超. 基于带权稀疏表示和字典学习的图像去噪模型[J]. 计算机科学, 2016, 43(Z11): 208-209. |
|