计算机科学 ›› 2019, Vol. 46 ›› Issue (11): 260-266.doi: 10.11896/jsjkx.190400159

• 图形图像与模式识别 • 上一篇    下一篇

基于快速自适应的二维经验模态分解的图像去噪算法

刘佩1, 贾建1,2, 陈莉1, 安影1   

  1. (西北大学信息科学与技术学院 西安710127)1
    (西北大学数学学院 西安710127)2
  • 收稿日期:2019-04-29 出版日期:2019-11-15 发布日期:2019-11-14
  • 通讯作者: 贾建(1977-),男,博士,教授,主要研究方向为模式识别、智能信息处理,E-mail:jiajian@nwu.edu.cn
  • 作者简介:刘佩(1993-),女,硕士生,主要研究方向为图像处理、机器学习,E-mail:201720987@stumail.nwu.edu.cn;陈莉(1963-),女,博士,教授,博士生导师,CCF高级会员,主要研究方向为数据库、数据挖掘、智能信息处理;安 影(1995-),女,硕士生,主要研究方向为图像处理、信息融合。
  • 基金资助:
    本文受西北大学紫藤国际合作计划项目(389040008)资助。

Image Denoising Algorithm Based on Fast and Adaptive Bidimensional Empirical Mode Decomposition

LIU Pei1, JIA Jian1,2, CHEN Li1, AN Ying1   

  1. (School of Information Science and Technology,Northwest University,Xi’an 710127,China)1
    (School of Mathematics,Northwest University,Xi’an 710127,China)2
  • Received:2019-04-29 Online:2019-11-15 Published:2019-11-14

摘要: 为了能够对图像进行自适应的分解,并准确刻画分解系数的分布状态,提出了一种新的基于快速自适应二维经验模态分解的图像去噪算法。该算法首先对图像进行快速自适应二维经验模态分解,通过确定分解后以噪声主导的子带的个数,进一步利用正态逆高斯模型对以噪声主导的子带系数分布进行建模;然后使用贝叶斯最大后验概率估计理论从模型导出相应的阈值;最后采用最优线性插值阈值函数算法完成去噪。仿真结果表明,对于添加不同标准差大小高斯白噪声的测试图像,所提算法在峰值信噪比上相比sym4小波去噪、双变量阈值去噪、邻近算子的全变分算法和重叠组稀疏的全变分算法分别平均提高了4.36dB,0.85dB,0.78dB和0.48dB,结构相似性指数也有不同程度的提高,有效地保留了更多的图像细节。实验结果证明,所提算法在视觉性能和评价指标方面均优于对比算法。

关键词: 快速自适应二维经验模态分解, 正态逆高斯模型, 贝叶斯最大后验概率估计理论, 最优线性插值阈值, 图像去噪

Abstract: In order to adaptively decompose the image and accurately describe the distribution state of the decomposition coefficients,a new image denoising algorithm based on fast and adaptive bidimensional empirical mode decomposition algorithm was proposed.Firstly,the algorithm performs fast and adaptive bidimensional empirical mode decomposition on the image.By determining the number of noise-dominated subband after decomposition,the noise-dominated subband coefficient distribution is further modeled by the normal inverse Gaussian model.Then the Bayesian maximum posteriori probability estimation theory is used to derive the corresponding threshold from the model.Finally,the optimal linear interpolation threshold function algorithm is used to complete the denoising.The simulation results show that for adding Gaussian white noise images of different standard deviation,the average signal-to-noise ratio is improved by 4.36dB,0.85dB,0.78dB and 0.48dB,respectively,compared with sym4 wavelet denoising,bivariate threshold denoising,pro-ximity algorithms for total variation,and overlapping group sparse total variation algorithm.Structural similarity index is also improved with different degrees,which shows it can effectively preserve more image details.The experimental results show that the proposed algorithm is superior to the comparison algorithms in terms of visual performance and evaluation index.

Key words: Fast and adaptive bidimensional empirical mode decomposition, Normal inverse Gaussian model, Bayesian maximum posterior probability estimation theory, OLI-Shrink threshold value, Image de-noising

中图分类号: 

  • TP391.4
[1] SUN X X,QU W.Comparison between mean filter and median filter algorithm in image denoising field[C]∥Applied Mechanics and Materials.Trans Tech Publications,2014,644:4112-4116.
[2] PUSHPAVALLI R,SRINIVASAN E.Decision based switching median filtering technique for image denoising[J].CiiT International Journal of Digital Image Processing,2010,2(10):405-410.
[3] ABHARI K,MARSOUSI M,BABYN P,et al.Medical image denoising using low pass filtering in sparse domain[C]∥2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.NJ:IEEE,2012:114-117.
[4] BUADES A,COLL B,MOREL J M.A non-local algorithm for image denoising[C]∥2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05).Washington DC:IEEE,2005,2:60-65.
[5] DABOV K,FOI A,KATKOVNIK V,et al.BM3D image denoising with shape-adaptive principal component analysis[C]∥Signal Processing with Adaptive Sparse Structured Representations.Saint Malo,France,2009.
[6] MALLAT S.A wavelet tour of signal processing[M].Elsevier,1999.
[7] RAN X Y,YE J Y,GUO C H.Image denoising method based on two-dimensional empirical mode and mean filtering[J].Journal of Computer Applications,2008,28(11):2884-2886.
[8] ABHARI K,MARSOUSI M,BABYN P,et al.Medical image denoising using low pass filtering in sparse domain∥2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Piscataway,NJ:IEEE Press,2012:114-117.
[9] ARFIA F B,SABRI A,MESSAOUD M B,et al.The bidimensional empirical mode decomposition with 2D-DWT for gaussian image denoising[C]∥2011 17th International Conference on Digital Signal Processing (DSP).Piscataway,NJ:IEEE Press,2011:1-5.
[10] PEI Y,WU Y,JIA D.Image denoising based on bidimensional empirical mode decomposition[C]∥2011 International Conference on Mechatronic Science,Electric Engineering and Computer (MEC).Piscataway,NJ:IEEE Press,2011:1122-1125.
[11] BHUIYAN S M A,ADHAMI R R,KHAN J F.A novel approach of fast and adaptive bidimensional empirical mode decomposition∥2008 IEEE International Conference on Acoustics,Speech and Signal Processing.Piscataway,NJ:IEEE Press,2008:1313-1316.
[12] CHEN L,WANG K,MENG Q Y,et al.Application of Two-Dimensional Empirical Mode Decomposition Method in Magnetic Flux Leakage Image Processing[J].Laboratory Research and Exploration,2012,31(6):28-31.
[13] LAHMIRI S.Image denoising in bidimensional empirical mode decomposition domain:the role of Student’s probability distribution function[J].Healthcare technology letters,2015,3(1):67-71.
[14] AN F P,LIN D C,ZHOU X W,et al.Enhancing image denoising performance of bidimensional empirical mode decomposition by improving the edge effect[J].International Journal of Antennas and Propagation,2015,2015(12):1-12.
[15] LIU D,CHEN X.Image denoising based on improved bidimensional empirical mode decomposition thresholding technology[J].Multimedia Tools and Applications,2019,76(8):7381-7417.
[16] BHUIYAN S M A,ADHAMI R R,KHAN J F.Fast and Adaptive Bidimensional Empirical Mode Decomposition Using Order-Statistics Filter Based Envelope Estimation [J].Eurasip Journal on Advances in Signal Processing,2008,2008(164):1-18.
[17] BHUIYAN S M A,ADHAMI R R,KHAN J F.A novel approach of fast and adaptive bidimensional empirical mode decomposition[C]∥2008 IEEE International Conference on Acoustics,Speech and Signal Processing.Piscataway,NJ:IEEE Press,2008:1313-1316.
[18] BARNDORFF-NIELSEN O E.Normal inverse Gaussian distributions and stochastic volatility modelling[J].Scandinavian Journal of statistics,1997,24(1):1-13.
[19] FATHI A,NAGHSH-NILCHI A R.Efficient image denoisingmethod based on a new adaptive wavelet packet thresholding function[J].IEEE Transactions on Image Processing,2012,21(9):3981-3990.
[20] CHANG S G,YU B,VETTERLI M.Adaptive wavelet thresholding for image denoising and compression[J].IEEE Transactions on Image Processing,2000,9(9):1532-1546.
[21] LIU J,HUANG T Z,SELESNICK I W,et al.Image restoration using total variation with overlapping group sparsity[J].Information Sciences,2015,295(a):232-246.
[22] MICCHELLI C A,SHEN L,XU Y.Proximity algorithms forimage models:denoising[J].Inverse Problems,2011,27(4):045009.
[23] WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:from error visibility to structural similarity[J].IEEE transactions on image processing,2004,13(4):600-612.
[24] ZHANG X.A Method for Image Denoising Based on Normal Inverse Gaussian Model Using Bayesian Estimation [J].Acta Optica Sinica,2010,30(1):70-74.
[25] JIA J,CHEN L.Image Denoising of Nonsubsampled Contourlet Transform Based on Normal Inverse Gaussian Model[J].Chinese Journal of Electronics,2011,39(7):1563-1568.
[26] LAN X Y,CHEN L,JIA J,et al.Image denoising algorithmbased on improved normal inverse Gaussian distribution model[J].Journal of Computer Applications,2017,34(10):3188-3192.
[27] BHUIYAN M I H,AHMAD M O,SWAMY M N S.Wavelet-based despeckling of medical ultrasound images with the symmetric normal inverse Gaussian prior[C]∥2007 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP’07).Piscataway,NJ:IEEE Press,2007:I-721-I-724.
[1] 吴静, 周先春, 徐新菊, 黄金. 三维块匹配波域调和滤波图像去噪[J]. 计算机科学, 2020, 47(7): 130-134.
[2] 曹义亲, 谢舒慧. 基于网格搜索的特定类别图像去噪算法[J]. 计算机科学, 2020, 47(11): 168-173.
[3] 李桂会,李晋江,范辉. 自适应匹配追踪图像去噪算法[J]. 计算机科学, 2020, 47(1): 176-185.
[4] 肖佳, 张俊华, 梅礼晔. 改进的三维块匹配去噪算法[J]. 计算机科学, 2019, 46(6): 288-294.
[5] 张真真,王建林. 结合第二代Bandelet变换分块的字典学习图像去噪算法[J]. 计算机科学, 2018, 45(7): 264-270.
[6] 赵杰,马玉娇,刘帅奇. 结合视觉显著性的图像去噪优化算法[J]. 计算机科学, 2018, 45(2): 312-317.
[7] 焦莉娟,王文剑. 一种基于差异系数的稀疏度自适应图像去噪算法[J]. 计算机科学, 2018, 45(2): 94-97.
[8] 陈鹏, 张建伟. 结合核函数与非线性偏微分方程的图像去噪方法[J]. 计算机科学, 2018, 45(11): 278-282.
[9] 马洪晋, 聂玉峰. 基于二级修复的多方向加权均值滤波算法[J]. 计算机科学, 2018, 45(10): 250-254.
[10] 孙少超. 一种非凸核范数最小化一般模型及其在图像去噪中的应用[J]. 计算机科学, 2017, 44(Z6): 236-239.
[11] 赵杰,王配配,门国尊. 基于非局部相似和低秩矩阵逼近的SAR图像去噪[J]. 计算机科学, 2017, 44(Z6): 183-187.
[12] 张爱玲,李鹏,刘晟. 基于粒子群算法的图像椒盐噪声去除算法[J]. 计算机科学, 2017, 44(8): 301-305.
[13] 柯祖福,易本顺,谢秋莹. 基于非局部自相似性的谱聚类图像去噪算法[J]. 计算机科学, 2017, 44(5): 299-303.
[14] 郭远华,周贤林. 基于灰度密度和四方向的随机脉冲噪声检测[J]. 计算机科学, 2016, 43(Z11): 220-222.
[15] 孙少超. 基于带权稀疏表示和字典学习的图像去噪模型[J]. 计算机科学, 2016, 43(Z11): 208-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .