计算机科学 ›› 2019, Vol. 46 ›› Issue (12): 292-297.doi: 10.11896/jsjkx.190500181

• 图形图像与模式识别 • 上一篇    下一篇

基于可穿戴设备的心电图自适应分类算法研究

樊敏1, 王晓锋1, 孟小峰2   

  1. (山西医科大学汾阳学院 山西 汾阳032200)1;
    (中国人民大学信息学院 北京100872)2
  • 收稿日期:2019-05-31 出版日期:2019-12-15 发布日期:2019-12-17
  • 通讯作者: 樊敏(1982-),女,硕士,副教授,CCF会员,主要研究方向为数据库、机器学习,E-mail:wsfmqq@163.com。
  • 作者简介:王晓锋(1978-),男,硕士,高级实验师,主要研究方向为数据库、数据挖掘;孟小峰(1964-),男,博士,教授,博士生导师,主要研究方向为大数据管理、数据集成。

Study on Patient-adaptive Algorithm for ECG Classification Based on Wearable Devices

FAN Min1, WANG Xiao-feng1, MENG Xiao-feng2   

  1. (Fenyang College of Shanxi Medical University,Fenyang,Shanxi 032200,China )1;
    (School of Information,Renmin University of China,Beijing 100872,China)2
  • Received:2019-05-31 Online:2019-12-15 Published:2019-12-17

摘要: 目前,心血管疾病已成为全球人类非传染性死亡的主要原因,死亡人数约占全球死亡总人数的1/3,且患病人数逐年增加。可穿戴设备被用于对心电图进行自动分类,以实现对心血管疾病的早监测、早预防。随着边缘机器学习和联邦学习的兴起,小型机器学习模型成为了人们关注的热点。针对可穿戴心电图设备低配置、低功耗及个性化的特点,文中研究了一种基于LSTM的轻量级网络结构,并采用自适应算法来优化病人个体的心电图分类模型。该模型利用MIT-BIH公开数据集开展实验,将VEB和SVEB的分类效果与其他相关研究进行了比较。实验结果表明,所提算法的模型结构简单且分类识别率高,能够满足可穿戴设备对病人心电图监测的需求。

关键词: 可穿戴设备, 心电图分类, 自适应, LSTM

Abstract: At present,cardiovascular diseases have become the main cause of global non-communicable death,death toll accounts for about one third of the total toll of death in the world,and the number of patients is increasing year by year.Wearable devices is used to automaticaly classify electrocardiogram to facilitate the early monitoring and prevention of cardiovascular diseases for patients.With the rise of edge machine lear-ning and federated learning ,small machine learning models have become a hot issue.According to the characteristics of wearable electrocardiogram equipment such as low configuration,low power consumption and personalization,this paper studied a lightweight network model based on LSTM,and used adaptive algorithm to optimize the ECG classification model of individual patients.The experiment is conducted by using the MIT-BIH open dataset.And compared with the current studies on the detection performance of VEB and SVEB,the experiment results show that the proposed algorithm has simple model structure and high classification performance,which can meet the requirement of ECG monitoring for patients by wearable devices.

Key words: Wearable devices, ECG classification, Adaptive, LSTM

中图分类号: 

  • TP181
[1] HU S S,GAO R L,LIU L S,et al.Summary of China cardiovascular disease report 2018[J].China Circulation Journal,2019,34(3):209-220.(in Chinese)胡盛寿,高润霖,刘力生,等.《中国心血管病报告》概要[J].中国循环杂志,2019,34(3):209-220.
[2] GARG V K,DEKEL O,XIAO L.Learning SMaLL Predictors[J/OL].https://arXiv.org/abs/1803.02388.
[3] YANG T,ANDREW G,EICHNER H,et al.Applied Federated Learning:Improving Google Keyboard Query Suggestions[J].arXiv:1812.02903v1.
[4] HOEKEMA R,UIJEN G J H,OOSTEROM A V.Geometrical aspects of the interindividual variability of multilead ECG recordings[J].IEEE Transactions on Biomedical Engineering,2001,48(5):551-559.
[5] HU Y H,PALREDDY S,TOMPKINS W J.A patient-adaptable ECG beat classifier using a mixture of experts approach[J].IEEE Transactions on Biomedical Engineering,1997,44(9):891-900.
[6] CHAZAL P D,REILLY R B.A patient-adapting heartbeat classifer using ECG morphology and heartbeat interval features[J].IEEE Transactions on Biomedical Engineering,2006,53(12):2535-2543.
[7] JIANG W,KONG S G.Block-Based Neural Networks for Personalized ECG Signal Classification[J].IEEE Transactions on Neural Networks,2007,18(6):1750-1761.
[8] INCE T,KIRANYAZ S,GABBOUJ M.A generic and robust system for automated patient-specific classification of ECG signals[J].IEEE Transactionson Biomedical Engineering,2009,56(5):1415-1426.
[9] RAJPURKAR P,HANNUN A Y,HAGHPANAHI M,et al.Cardiologist-level arrhythmia detection with convolutional neural networks[J].arXiv:1707.01836v1.
[10] HANNUN A Y,RAJPURKAR P,HAGHPANAHI M,et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J].Nature Medicine,2019,25(1):65-69.
[11] JUN T J,NGUYEN H M,KANG D,et al.Ecg arrhythmia classification using a 2-d convolutional neural network[J].arXiv:1804.06812v1.
[12] ACHARYA U R,OH S L,HAGIWARA Y,et al.A deep convo- lutional neural network model to classify heartbeats[J].Computers in Biology and Medicine,2017,89:389-396.
[13] LUO K,LI J Q,WANG Z G,et al.Patient-Specific Deep Architectural Model for ECG Classification[J].Journal of Healthcare Engineering,2017,2017(1):1-13.
[14] KIRANYAZ S,INCE T,GABBOUJ M.Real-time patient-spe- cific ecg classification by 1-d convolutional neural networks[J].IEEE Transactions on Biomedical Engineering,2016,63(3):664-675.
[15] OH S L,NG E Y,TANC R S,et al.Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats[J].Computers in Biology and Medicine,2018,102(1):278-287.
[16] SAADATNEJAD S,OVEISI M,HASHEMI M.LSTM-Based ECG Classification for Continuous Monitoring on Personal Wearable Devices[J].IEEE Journal of Biomedical and Health Informatics,2019,2019(1):1-9.
[17] PAN J,TOMPKINS W J.A real-time QRS detection algorithm[J].IEEE transactions on biomedical engineering,1985,1985(3):230-236.
[18] ANSI/AAMI/ISO EC57.Testing and reporting performance results ofcardiac rhythm and ST segment measurement algorithms[S].Association for the Advancement of Medical Instrumentation(AAMI),2008.
[19] CHAZAL P D,DWYER M O,REILLY R B.Automatic classification of heartbeats using ECG morphology and heartbeat interval features[J].IEEE Transactions on Biomedical Engineering,2004,51(7):1196-1206.
[1] 王秉洲, 王慧斌, 沈洁, 张丽丽. 基于自适应渐消UKF的FastSLAM算法[J]. 计算机科学, 2020, 47(9): 213-218.
[2] 李双刚, 张爽, 王兴伟. 基于自适应虚拟机迁移的云资源调度机制[J]. 计算机科学, 2020, 47(9): 238-245.
[3] 章军辉, 陈大鹏, 李庆. 车辆跟随控制系统研究现状及发展趋势[J]. 计算机科学, 2020, 47(8): 245-254.
[4] 王静宇, 刘思睿. 大数据风险访问控制研究进展[J]. 计算机科学, 2020, 47(7): 56-65.
[5] 刘肖, 袁冠, 张艳梅, 闫秋艳, 王志晓. 基于自适应多分类器融合的手势识别[J]. 计算机科学, 2020, 47(7): 103-110.
[6] 王文刀, 王润泽, 魏鑫磊, 漆云亮, 马义德. 基于堆叠式双向LSTM的心电图自动识别算法[J]. 计算机科学, 2020, 47(7): 118-124.
[7] 史朝卫, 孟相如, 马志强, 韩晓阳. 拓扑综合评估与权值自适应的虚拟网络映射算法[J]. 计算机科学, 2020, 47(7): 236-242.
[8] 齐薇, 虞慧群, 范贵生, 陈亮. 基于自适应粒子群的WSN覆盖优化[J]. 计算机科学, 2020, 47(7): 243-249.
[9] 张迎, 张宜飞, 王中卿, 王红玲. 基于主次关系特征的自动文摘方法[J]. 计算机科学, 2020, 47(6A): 6-11.
[10] 臧睿, 刘笑笑. 分段加权布谷鸟算法及其应用[J]. 计算机科学, 2020, 47(6A): 119-123.
[11] 程中建, 周双娥, 李康. 基于多尺度自适应权重的稀疏表示目标跟踪算法[J]. 计算机科学, 2020, 47(6A): 181-186.
[12] 彭浩, 和丽芳. 基于改进树种算法的彩色图像多阈值分割[J]. 计算机科学, 2020, 47(6A): 220-225.
[13] 赵晓东, 苏公瑾, 李克利, 成杰, 徐江峰. 一种融合EMD分解和LSTM网络的频谱占用度预测模型[J]. 计算机科学, 2020, 47(6A): 294-298.
[14] 丁子昂, 乐曹伟, 吴玲玲, 付明磊. 基于CEEMD-Pearson和深度LSTM混合模型的PM2.5浓度预测方法[J]. 计算机科学, 2020, 47(6A): 444-449.
[15] 宋娅菲, 谌雨章, 沈君凤, 曾张帆. 基于改进残差网络的水下图像重建方法[J]. 计算机科学, 2020, 47(6A): 500-504.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[2] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[3] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[4] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[5] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[6] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[7] 杨羽琦,章国安,金喜龙. 车载自组织网络中基于车辆密度的双簇头路由协议[J]. 计算机科学, 2018, 45(4): 126 -130 .
[8] 施超,谢在鹏,柳晗,吕鑫. 基于稳定匹配的容器部署策略的优化[J]. 计算机科学, 2018, 45(4): 131 -136 .
[9] 庞博,金乾坤,合尼古力·吾买尔,齐兴斌. 软件定义网络中基于网络切片和ILP模型的路由方案[J]. 计算机科学, 2018, 45(4): 143 -147 .
[10] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151 .