计算机科学 ›› 2019, Vol. 46 ›› Issue (12): 292-297.doi: 10.11896/jsjkx.190500181
樊敏1, 王晓锋1, 孟小峰2
FAN Min1, WANG Xiao-feng1, MENG Xiao-feng2
摘要: 目前,心血管疾病已成为全球人类非传染性死亡的主要原因,死亡人数约占全球死亡总人数的1/3,且患病人数逐年增加。可穿戴设备被用于对心电图进行自动分类,以实现对心血管疾病的早监测、早预防。随着边缘机器学习和联邦学习的兴起,小型机器学习模型成为了人们关注的热点。针对可穿戴心电图设备低配置、低功耗及个性化的特点,文中研究了一种基于LSTM的轻量级网络结构,并采用自适应算法来优化病人个体的心电图分类模型。该模型利用MIT-BIH公开数据集开展实验,将VEB和SVEB的分类效果与其他相关研究进行了比较。实验结果表明,所提算法的模型结构简单且分类识别率高,能够满足可穿戴设备对病人心电图监测的需求。
中图分类号:
[1] | HU S S,GAO R L,LIU L S,et al.Summary of China cardiovascular disease report 2018[J].China Circulation Journal,2019,34(3):209-220.(in Chinese)胡盛寿,高润霖,刘力生,等.《中国心血管病报告》概要[J].中国循环杂志,2019,34(3):209-220. |
[2] | GARG V K,DEKEL O,XIAO L.Learning SMaLL Predictors[J/OL].https://arXiv.org/abs/1803.02388. |
[3] | YANG T,ANDREW G,EICHNER H,et al.Applied Federated Learning:Improving Google Keyboard Query Suggestions[J].arXiv:1812.02903v1. |
[4] | HOEKEMA R,UIJEN G J H,OOSTEROM A V.Geometrical aspects of the interindividual variability of multilead ECG recordings[J].IEEE Transactions on Biomedical Engineering,2001,48(5):551-559. |
[5] | HU Y H,PALREDDY S,TOMPKINS W J.A patient-adaptable ECG beat classifier using a mixture of experts approach[J].IEEE Transactions on Biomedical Engineering,1997,44(9):891-900. |
[6] | CHAZAL P D,REILLY R B.A patient-adapting heartbeat classifer using ECG morphology and heartbeat interval features[J].IEEE Transactions on Biomedical Engineering,2006,53(12):2535-2543. |
[7] | JIANG W,KONG S G.Block-Based Neural Networks for Personalized ECG Signal Classification[J].IEEE Transactions on Neural Networks,2007,18(6):1750-1761. |
[8] | INCE T,KIRANYAZ S,GABBOUJ M.A generic and robust system for automated patient-specific classification of ECG signals[J].IEEE Transactionson Biomedical Engineering,2009,56(5):1415-1426. |
[9] | RAJPURKAR P,HANNUN A Y,HAGHPANAHI M,et al.Cardiologist-level arrhythmia detection with convolutional neural networks[J].arXiv:1707.01836v1. |
[10] | HANNUN A Y,RAJPURKAR P,HAGHPANAHI M,et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J].Nature Medicine,2019,25(1):65-69. |
[11] | JUN T J,NGUYEN H M,KANG D,et al.Ecg arrhythmia classification using a 2-d convolutional neural network[J].arXiv:1804.06812v1. |
[12] | ACHARYA U R,OH S L,HAGIWARA Y,et al.A deep convo- lutional neural network model to classify heartbeats[J].Computers in Biology and Medicine,2017,89:389-396. |
[13] | LUO K,LI J Q,WANG Z G,et al.Patient-Specific Deep Architectural Model for ECG Classification[J].Journal of Healthcare Engineering,2017,2017(1):1-13. |
[14] | KIRANYAZ S,INCE T,GABBOUJ M.Real-time patient-spe- cific ecg classification by 1-d convolutional neural networks[J].IEEE Transactions on Biomedical Engineering,2016,63(3):664-675. |
[15] | OH S L,NG E Y,TANC R S,et al.Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats[J].Computers in Biology and Medicine,2018,102(1):278-287. |
[16] | SAADATNEJAD S,OVEISI M,HASHEMI M.LSTM-Based ECG Classification for Continuous Monitoring on Personal Wearable Devices[J].IEEE Journal of Biomedical and Health Informatics,2019,2019(1):1-9. |
[17] | PAN J,TOMPKINS W J.A real-time QRS detection algorithm[J].IEEE transactions on biomedical engineering,1985,1985(3):230-236. |
[18] | ANSI/AAMI/ISO EC57.Testing and reporting performance results ofcardiac rhythm and ST segment measurement algorithms[S].Association for the Advancement of Medical Instrumentation(AAMI),2008. |
[19] | CHAZAL P D,DWYER M O,REILLY R B.Automatic classification of heartbeats using ECG morphology and heartbeat interval features[J].IEEE Transactions on Biomedical Engineering,2004,51(7):1196-1206. |
[1] | 王秉洲, 王慧斌, 沈洁, 张丽丽. 基于自适应渐消UKF的FastSLAM算法[J]. 计算机科学, 2020, 47(9): 213-218. |
[2] | 李双刚, 张爽, 王兴伟. 基于自适应虚拟机迁移的云资源调度机制[J]. 计算机科学, 2020, 47(9): 238-245. |
[3] | 章军辉, 陈大鹏, 李庆. 车辆跟随控制系统研究现状及发展趋势[J]. 计算机科学, 2020, 47(8): 245-254. |
[4] | 王静宇, 刘思睿. 大数据风险访问控制研究进展[J]. 计算机科学, 2020, 47(7): 56-65. |
[5] | 刘肖, 袁冠, 张艳梅, 闫秋艳, 王志晓. 基于自适应多分类器融合的手势识别[J]. 计算机科学, 2020, 47(7): 103-110. |
[6] | 王文刀, 王润泽, 魏鑫磊, 漆云亮, 马义德. 基于堆叠式双向LSTM的心电图自动识别算法[J]. 计算机科学, 2020, 47(7): 118-124. |
[7] | 史朝卫, 孟相如, 马志强, 韩晓阳. 拓扑综合评估与权值自适应的虚拟网络映射算法[J]. 计算机科学, 2020, 47(7): 236-242. |
[8] | 齐薇, 虞慧群, 范贵生, 陈亮. 基于自适应粒子群的WSN覆盖优化[J]. 计算机科学, 2020, 47(7): 243-249. |
[9] | 张迎, 张宜飞, 王中卿, 王红玲. 基于主次关系特征的自动文摘方法[J]. 计算机科学, 2020, 47(6A): 6-11. |
[10] | 臧睿, 刘笑笑. 分段加权布谷鸟算法及其应用[J]. 计算机科学, 2020, 47(6A): 119-123. |
[11] | 程中建, 周双娥, 李康. 基于多尺度自适应权重的稀疏表示目标跟踪算法[J]. 计算机科学, 2020, 47(6A): 181-186. |
[12] | 彭浩, 和丽芳. 基于改进树种算法的彩色图像多阈值分割[J]. 计算机科学, 2020, 47(6A): 220-225. |
[13] | 赵晓东, 苏公瑾, 李克利, 成杰, 徐江峰. 一种融合EMD分解和LSTM网络的频谱占用度预测模型[J]. 计算机科学, 2020, 47(6A): 294-298. |
[14] | 丁子昂, 乐曹伟, 吴玲玲, 付明磊. 基于CEEMD-Pearson和深度LSTM混合模型的PM2.5浓度预测方法[J]. 计算机科学, 2020, 47(6A): 444-449. |
[15] | 宋娅菲, 谌雨章, 沈君凤, 曾张帆. 基于改进残差网络的水下图像重建方法[J]. 计算机科学, 2020, 47(6A): 500-504. |
|