计算机科学 ›› 2021, Vol. 48 ›› Issue (8): 315-321.doi: 10.11896/jsjkx.200500031

• 人机交互 • 上一篇    下一篇

虚拟现实环境下基于眼动跟踪的导航需求预测与辅助

朱晨爽, 程时伟   

  1. 浙江工业大学计算机科学与技术学院 杭州310023
  • 收稿日期:2020-05-08 修回日期:2020-07-17 发布日期:2021-08-10
  • 通讯作者: 朱晨爽(759240316@qq.com)
  • 基金资助:
    国家自然科学基金(61772468)

Prediction and Assistance of Navigation Demand Based on Eye Tracking in Virtual Reality Environment

ZHU Chen-shuang, CHENG Shi-wei   

  1. School of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China
  • Received:2020-05-08 Revised:2020-07-17 Published:2021-08-10
  • About author:ZHU Chen-shuang,born in 1995,postgraduate.Her main research interests include virtual reality and so on.
  • Supported by:
    National Natural Science Foundation of China(61772468).

摘要: 针对复杂虚拟现实场景中传统导航方法对用户支持不足和用户沉浸感较低等问题,文中提出了基于梯度提升迭代决策树的二分类模型,利用用户在虚拟现实环境中使用辅助导航时需要的眼动数据,来分析和预测用户在任务过程中是否需要辅助导航。根据用户的注视序列对该模型进行评估,得到用户需求判定方法的平均精确率和准确率分别为77.6%与77.2%。此外,文中借助所设计模型实现了一个导航辅助原型系统,通过对用户的眼动数据进行分类,来自动呈现导航辅助界面。实验结果表明,与传统的永久性辅助导航方法相比,新提出的自适应辅助导航具有更好的用户体验。

关键词: 虚拟现实, 眼动跟踪, 人机交互, 导航

Abstract: In order to solve the problems of insufficient user support and low user immersion in traditional navigation methods in complex virtual reality scenes, this paper proposes a binary classification model based on the gradient boost decision tree,which uses eye movement data before and after the user's need for auxiliary navigation in the VR environment to analyze and predict whether the user needs navigation during the task.The model is evaluated according to the user's gaze sequence,and the average precision and accuracy of the user demand judgment method are 77.6% and 77.2%,respectively.In addition,we implemente a navigation aid prototype system.By classifying the user's navigation requirement based on eye movement data,the user interface of the prototype system can automatically present the map for navigation.Experimental results showed that,compared with the traditional permanent assisted navigation method,the adaptive assisted navigation proposed in this paper can provide better user experience.

Key words: Virtual reality, Eye tracking, Human computer interaction, Navigation

中图分类号: 

  • TP391
[1]ALGHOFAILI R,SAWAHATA Y,HUANG H K,et al.Lost in Style:Gaze-driven Adaptive Aid for VR Navigation[C]//CHI Conference.Association for Computing Machinery,New York,NY,USA,2019:1-12.
[2]VLCEK K,LACZO J.Neural correlates of Spatial Navigationchanges in Mild Cognitive Impairment and Alzheimer's Disease[J].Front Behav Neurosci,2014(8):89.
[3]LAURA P,DE LUCA M,RAFFAELLA N,et al.Navigational Style Influences Eye Movement Pattern during Exploration and Learning of an Environmental Map[J].Frontiers in Behavioral Neuroscience,2016(10):e43620.
[4]KEVIN S,PAI Y S,KUNZE K.Virtual gaze:exploring use of gaze as rich interaction method with virtual agent in interactive virtual reality content[C]//Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology.ACM,2018:130.
[5]BOYD L A E,GUPTA S,VIKMANI S B,et al.vrSocial:To-ward Immersive Therapeutic VR Systems for Children with Autism[C]//The 2018 CHI Conference.Association for Computing Machinery.New York,NY,USA,2018:1-12.
[6]KASAHARA S,ANDO M,SUGANUMA K,et al.ParallelEyes:Exploring Human Capability and Behaviors with Paralleled First Person View Sharing[C]//CHI Conference on Human Factors in Computing Systems.Association for Computing Machinery,New York,NY,USA,2016:1-2.
[7]GANDRUD J,INTERRANTE V.Predicting destination using head orientation and gaze direction during locomotion in VR[C]//Proceedings of the ACM Symposium on Applied Perception.ACM,2016:31-38.
[8]LEE J,CHEON M,MOON S E,et al.Peripersonal Space in Vir-tual Reality:Navigating 3D Space with Different Perspectives[C]//Symposium on User Interface Software & Technology.Association for Computing Machinery,New York,NY,USA,2016:207-208.
[9]SAHA D P,KNAPP R B,MARTIN T L.Affective feedback in a virtual reality based intelligent supermarket[C]//Adjunct Acm Joint Conference on Pervasive & Ubiquitous Computing.ACM,2017:646-653.
[10]ZHOU J B.Study and Implementation on the Algorithm of Eye Tracking System[D].Xi'an:Xidian University,2010.
[11]WU Y Y.Research on the Technology of Eye Tracking[D].Xi'an:Xidian University,2009.
[12]MIAO L F.Geometry Modeling and Rendering of Point Set Surface[D].Hangzhou:Zhejiang University,2005.
[13]ZHU M,WAN L,ZHANG Y Y,et al.From 3D Model to Holographic Model:Application of Intelligent Model in Urban Planning-Taking the Urban Planning Assistant System of Chaohu City as an Example[J].Journal of Anhui Jianzhu University,2019,27(5):36-43.
[14]LIN G L,CAO Y J,BAO Y F.Research on Roaming and Interac-tion of Ancient Architecture Based on the Integration of 3D Modeling and VR Technology-Taking Jiayuguan Fortress as an Example[J].Journal of Lanzhou University of Arts and Science(Natural Science Edition),2020,34(1):71-75.
[15]QU H.Using XGBoost to Identify Structures in Time Series[J].Journal of Jiujiang Vocational and Technical College,2019(3):80-81.
[16]TANG M Z,ZHAO Q,LONG W,et al.Fault Detection Based on Gradient Boosting Decision Tree for Wind Turbine Gearbox[J].Hunan Electric Power,2019,39(6):56-60,64.
[17]WANG Y,LI W,WU K H,et al.Application of Fusion Model of GBDT and LR in Encrypted Traffic Identification[J].Computer and Modernization,2020(3):93-98.
[18]FU F,JIANG J,SHAO Y,et al.An experimental evaluation of large scale GBDT systems[J].Proceedings of the VLDB Endowment,2019,12(11):1357-1370.
[19]LIU Y Q,LIU Z Y,ZHOU K,et al.Predicting Search UserExamination with Visual Saliency[J].ACM Sigir Forum,2016(6):619-628.
[20]CHU X F,ZHU C Y.Design and Implementation of 3D Virtual Roaming System[J].Mechanical and Electrical Information,2020(6):87-89.
[21]SANCHES C L,KISE K,AUGEREAU O.Japanese ReadingObjective Understanding Estimation by Eye Gaze Analysis[C]//UbiComp.ACM,2017:121-124.
[22]AGEEV M,LAGUN D,AGICHTEIN E.Improving search result summaries by using searcher behavior data[C]//Procee-dings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval.Association for Computing Machinery,New York,NY,USA,2013:13-22.
[23]FABRI M,MOORE D,HOBBS D.Mediating the Expression of Emotion in Educational Collaborative Virtual Environments:An Experimental Study[J].Virtual Reality,2004,7(2):66-81.
[24]LOPES P,ION A,BAUDISCH P.Impacto:Simulating Physical Impact by Combining Tactile Stimulation with Electrical Muscle Stimulation[C]//Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology.Association for Computing Machinery,New York,NY,USA,2015:11-19.
[25]DEY A,PIUMSOMBOON T,LEE Y,et al.Effects of Sharing Physiological States of Players in a Collaborative Virtual Reality Gameplay[C]//CHI Conference on Human Factors in Computing Systems.ACM,2017:4045-4056.
[1] 刘亮, 蒲浩洋. 基于LSTM的多维度特征手势实时识别[J]. 计算机科学, 2021, 48(8): 328-333.
[2] 钱基德, 熊仁和, 王乾垒, 杜冬, 王在俊, 钱基业. 边缘计算在飞行训练中的应用[J]. 计算机科学, 2021, 48(6A): 603-607.
[3] 马思琪, 车啸平, 于淇, 岳晨峰. 基于事件的虚拟现实用户体验评估方法研究[J]. 计算机科学, 2021, 48(2): 167-174.
[4] 张宇翔, 任爽. 定位技术在虚拟现实中的应用综述[J]. 计算机科学, 2021, 48(1): 308-318.
[5] 程时伟, 陈一健, 徐静如, 张柳新, 吴剑锋, 孙凌云. 一种基于脑电信号的眼动方向分类方法[J]. 计算机科学, 2020, 47(4): 112-118.
[6] 张政霖,张利伟,王文娟,夏莉,符豪,王宏志,杨立状,李海. 计算机化神经认知评估系统研究综述[J]. 计算机科学, 2020, 47(2): 150-156.
[7] 宁泽西, 秦绪佳, 陈佳舟. 基于三维场景的视频融合方法[J]. 计算机科学, 2020, 47(11A): 281-285.
[8] 程时伟, 齐文杰. 基于动态轨迹的眼动跟踪隐式标定方法[J]. 计算机科学, 2019, 46(8): 282-291.
[9] 翟书颖, 李茹, 李波, 郝少阳. 视觉群智感知应用综述[J]. 计算机科学, 2019, 46(6A): 11-15.
[10] 姬莉霞,刘成明. 基于虚拟现实技术的模糊静态图像目标重现方法[J]. 计算机科学, 2018, 45(7): 248-251.
[11] 成静, 张涛, 王涛, 董占伟. 一种基于图复杂度的移动导航服务回归测试优先方法[J]. 计算机科学, 2018, 45(6): 141-144.
[12] 陈甜甜, 姚璜, 左明章, 田元, 杨梦婷. 基于深度信息的动态手势识别综述[J]. 计算机科学, 2018, 45(12): 42-51.
[13] 周婧,陈庙红,吴豪杰. 基于惯性导航的平面航迹推算的研究[J]. 计算机科学, 2017, 44(Z6): 582-586.
[14] 王攀藻. 基于位置服务的智能旅游地图导航系统研究[J]. 计算机科学, 2017, 44(Z6): 575-576.
[15] 张宁, 刘迎春, 沈智鹏, 郭晨. 虚拟现实技术在专门用途英语教学中的应用研究综述[J]. 计算机科学, 2017, 44(Z6): 43-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 侯林清, 蔡英, 范艳芳, 夏红科. 移动社交网中基于兴趣社区的消息传输方案[J]. 计算机科学, 2018, 45(6): 105 -110 .
[2] 韩朝, 苗夺谦, 任福继. 基于粗糙集理论的中文知识问答的知识谓词分析[J]. 计算机科学, 2018, 45(6): 183 -186 .
[3] 荣俸萍,方勇,左政,刘亮. MACSPMD:基于恶意API调用序列模式挖掘的恶意代码检测[J]. 计算机科学, 2018, 45(5): 131 -138 .
[4] 周华平,刘光宗,张贝贝. 基于索引偏移的MapReduce聚类负载均衡策略[J]. 计算机科学, 2018, 45(5): 303 -309 .
[5] 廖湖声, 黄珊珊, 徐俊刚, 刘仁峰. Spark性能优化技术研究综述[J]. 计算机科学, 2018, 45(7): 7 -15 .
[6] 陈贵平,王子牛. 基于大数据分析的用户信息多重加密存储技术[J]. 计算机科学, 2018, 45(7): 150 -153 .
[7] 王蓉, 刘遵仁, 纪俊. 基于投票式属性重要度的快速属性约简算法[J]. 计算机科学, 2018, 45(7): 197 -201 .
[8] 陈晋音,胡可科,李玉玮. 基于MB-RRT*的无人机多点航迹规划算法研究[J]. 计算机科学, 2018, 45(6A): 85 -90 .
[9] 袁佳欣, 陈建新, 肖俊, 吴道亮. 基于回填算法的时间感知的最小区域任务调度算法[J]. 计算机科学, 2018, 45(8): 100 -104 .
[10] 杨新, 李天瑞, 刘盾, 方宇, 王宁. 基于决策粗糙集的广义序贯三支决策方法[J]. 计算机科学, 2018, 45(10): 1 -5 .