计算机科学 ›› 2020, Vol. 47 ›› Issue (8): 1-4.doi: 10.11896/jsjkx.200600027

• 高性能计算 • 上一篇    下一篇

并行计算学科发展历程

陈国良, 张玉杰   

  1. 南京邮电大学计算机学院 南京 210023
    国家高性能计算中心南京分中心 南京 210023
    江苏省高性能计算与智能处理工程研究中心 南京 210023
  • 出版日期:2020-08-15 发布日期:2020-08-10
  • 通讯作者: 陈国良(glchen@njupt.edu.cn)
  • 基金资助:
    南京邮电大学教学改革研究项目(JG00419JX67)

Development of Parallel Computing Subject

CHEN Guo-liang, ZHANG Yu-jie   

  1.  School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
     Nanjing Center of HPC China, Nanjing 210023, China
     Jiangsu HPC and Intelligent Processing Engineer Research Center, Nanjing 210023, China
  • Online:2020-08-15 Published:2020-08-10
  • About author:CHEN Guo-liang, born in 1938, is a member of Chinese Academy of Sciences, academic leader of non-numerical parallel algorithms in China, professor of Nanjing University of Posts and Telecommunications, Shenzhen University and University of Science and Technology of China.Director of national high performance computing center, and executive director of International High Performance Computing (Asia).
  • Supported by:
    This work was supported by the Teaching Reform Research Project of Nanjing University of Posts and Communications (JG00419JX67).

摘要: 计算科学已经与传统的理论科学和实验科学并列成为第三门科学, 它们相辅相成地推动着人类科技的发展和社会文明的进步。21世纪科学和经济上的关键问题研究前沿, 有可能通过熟练地掌握先进的计算技术并运用计算科学得到解决。高性能计算是一个国家综合国力的体现, 是支撑国家实力持续发展的关键技术之一, 在国防安全、高科技发展和国民经济建设中占有重要的战略地位。经过40多年的发展, 围绕并行计算机、并行算法和并行程序设计, 融合并行计算机体系结构、数值和非数值的并行算法设计及并行程序设计于一体, 形成了并行计算(Parallel Computing)“结构-算法-编程-应用”完整的学科体系与系统课程框架。文中回顾了作者在并行计算学科的发展方面所做的工作, 并对非数值计算中的计算方法和新型的非冯诺依曼结构计算机体系结构的研究进行了介绍。

关键词: 并行计算, 非数值计算, 计算机体系结构, 学科发展, 高性能计算

Abstract: Computational science has become the third science in parallel with traditional theoretical science and experimentalscien-ce.They complement each other and promote the development of human science and technology and the progress of social civilization.The research frontiers of key scientific and economic problems in the 21st century may be solved by computing techniques and computing science.High-performance computing is a manifestation of a country’s comprehensive national strength, and it is one of the key technologies supporting the continuous development of national strength.It has an important strategic position in national defense security, high-tech development and national economic construction.Through more than 40 years of development, we have focused on parallel computers, parallel algorithms and parallel programming, integrating parallel computer architecture, numerical and non-numerical parallel algorithm design and parallel program design, forming parallel computing “architecture-algorithm-programming-application” disciplinary system and system curriculum framework.This article reviews the work we have done in the development of parallel computing, and introduces the calculation methods in non-numerical computing and the research of new non-von Neumann structured computer architecture.

Key words: Parallel computing, Non-numerical computing, Computer architecture, Subject evolution, High performance computing

中图分类号: 

  • TP399.9
[1] CHEN G L, MIAO Q K, SUN G Z, et al.Layered models of par-allel computation .Journal of University of Science and Technology of China, 2008(7):137-143.
[2] CHEN G L, SUN G Z, XU Y, et al.Methodology of Research on Parallel Algorithm .Chinese Journal of Computers, 2008(9):5-14.
[3] CHEN G L.Parallel Algorithms for Non-Numerical Computing .Journal of Computer Research and Development, 1988(11):30-46.
[4] WILKES M V.Automatic Calculating Machines.Journal of the Royal Society of Arts, 1951, 100(4862):56-90.
[5] CHEN Y N, HUANG K C, CHEN G L.The concept design of direct execution of high-level language FORTRAN computer .Journal of University of Science and Technology of China, 1980(4):47-54.
[6] LEI Y F, HUANG L S, CHEN G L.Principle of ConvertingRDF Query Language to SQL and Its Implementation .Journal of Computer Research and Development, 2004(7):214-220.
[7] JIN Y, HE H C, LV Y T.Principle of ternary optical computer .Science in China(Series E), 2003(2):111-115.
[8] SHEN Y F, CHEN G L, ZHANG Q F.Motif Finding Algorithm on Nanocomputing Platform .Journal of Chinese Computer System, 2007(4):61-65.
[9] REDDI S S, FEUSTEL E A.A Restructurable Computer Sys-tem.IEEE Transactions on Computers, 1981(1):21-38.
[10] SU X B, CHEN G L.Design and analysis of Manchester data flow prototype.Computer Engineering and Applications, 1987(10):3-9.
[11] CHEN G L, XIONG Y.General-Purpose Parallel Neural Network Simulation System .Journal of Chinese Computer System, 1992, 13(12):16-21, 32.
[12] ZHONG C, CHEN G L.Quantum computing and its applica-tions .Journal of Guangxi University(Natural Science Edition), 2002, 27(1):83-86.
[13] YANG W, HUANG L S, LUO Y L, CHEN G L.Unconditionally Secure Quantum Oblivious Transfer .Acata Electronica Sinica, 2007, 35(8):1543-1547.
[1] 马梦宇, 吴烨, 陈荦, 伍江江, 李军, 景宁. 显示导向型的大规模地理矢量实时可视化技术[J]. 计算机科学, 2020, 47(9): 117-122.
[2] 阳王东, 王昊天, 张宇峰, 林圣乐, 蔡沁耘. 异构混合并行计算综述[J]. 计算机科学, 2020, 47(8): 5-16.
[3] 冯凯, 李婧. k元n方体的子网络可靠性研究[J]. 计算机科学, 2020, 47(7): 31-36.
[4] 杨宗霖, 李天瑞, 刘胜久, 殷成凤, 贾真, 珠杰. 基于Spark Streaming的流式并行文本校对[J]. 计算机科学, 2020, 47(4): 36-41.
[5] 邓定胜. 一种改进的DBSCAN算法在Spark平台上的应用[J]. 计算机科学, 2020, 47(11A): 425-429.
[6] 汪洋, 李鹏, 季一木, 樊卫北, 张玉杰, 王汝传, 陈国良. 高性能计算与天文大数据研究综述[J]. 计算机科学, 2020, 47(1): 1-6.
[7] 徐传福,王曦,刘舒,陈世钊,林玉. 基于Python的大规模高性能LBM多相流模拟[J]. 计算机科学, 2020, 47(1): 17-23.
[8] 徐磊, 陈荣亮, 蔡小川. 基于非结构化网格的高可扩展并行有限体积格子[J]. 计算机科学, 2019, 46(8): 84-88.
[9] 颜辉, 朱伯靖, 万文, 钟英, DavidAYune. 基于超算暨HPIC-LBM的大时空尺度三维湍流磁重联[J]. 计算机科学, 2019, 46(8): 89-94.
[10] 舒娜,刘波,林伟伟,李鹏飞. 分布式机器学习平台与算法综述[J]. 计算机科学, 2019, 46(3): 9-18.
[11] 贾迅, 钱磊, 邬贵明, 吴东, 谢向辉. FPGA应用于高性能计算的研究现状和未来挑战[J]. 计算机科学, 2019, 46(11): 11-19.
[12] 张云泉. 2018年中国高性能计算机发展现状分析与展望[J]. 计算机科学, 2019, 46(1): 1-5.
[13] 李炎, 马俊明, 安博, 曹东刚. 一个基于Web的轻量级大数据处理与可视化工具[J]. 计算机科学, 2018, 45(9): 60-64.
[14] 张滨, 乐嘉锦. 基于列存储的MapReduce分布式Hash连接算法[J]. 计算机科学, 2018, 45(6A): 471-475.
[15] 廖星,袁景凌,陈旻骋. 一种自适应权重的并行PSO快速装箱算法[J]. 计算机科学, 2018, 45(3): 231-234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .