计算机科学 ›› 2021, Vol. 48 ›› Issue (8): 309-314.doi: 10.11896/jsjkx.200700219

• 人机交互 • 上一篇    下一篇

SSVEP刺激数量对AR-BCI性能的影响

杜钰琳, 黄章瑞, 赵新灿, 刘晨阳   

  1. 郑州大学信息工程学院 郑州450001
  • 收稿日期:2020-07-31 修回日期:2020-09-14 发布日期:2021-08-10
  • 通讯作者: 赵新灿(iexczhao@zzu.edu.cn)
  • 基金资助:
    国家自然科学基金青年科学基金项目(61807031)

SSVEP Stimulus Number Effect on Performance of Brain-Computer Interfaces in Augmented Reality Glasses

DU Yu-lin, HUANG Zhang-rui, ZHAO Xin-can, LIU Chen-yang   

  1. School of Information Engineering,Zhengzhou University,Zhengzhou 450001,China
  • Received:2020-07-31 Revised:2020-09-14 Published:2021-08-10
  • About author:DU Yu-lin,born in 1998,postgraduate.Her main research interests include augmented reality and brain-computer interface. (duyulin0228@163.com)ZHAO Xin-can,born in 1972,Ph.D,associate professor.His main research interests include virtual and augmented reality.
  • Supported by:
    Young Scientists Fund of the National Natural Science Foundation of China(61807031).

摘要: 基于稳态视觉诱发电位(Steady-State Visual Evoked Potentials,SSVEP)的脑-机接口(Brain-Computer Interfaces,BCI)可将不同频率的视觉刺激目标映射到某种控制指令中以达到控制外部设备的目的。为了探究AR-BCI对刺激数量的可容纳性及多目标刺激数量对AR-BCI分类精度的影响,文中设计了4组不同数量的刺激界面,并通过HoloLens(AR)眼镜进行显示。对比分析表明,随着刺激数量的增加,4种布局的分类正确率逐渐降低,并且刺激目标的位置会影响分类的精度。相同的实验范式下,通过比较计算机屏幕(PC)和AR两种显示终端的分类结果发现,刺激目标数量增多对AR-BCI的分类性能影响较大。目前的研究结果表明,刺激数量是影响AR环境中构建AR-BCI的关键因素。

关键词: 脑机接口, 稳态视觉诱发电位, 增强现实, 刺激数量

Abstract: Steady-state visual evoked potentials-based brain-computer interfaces (SSVEP-BCI) can map visual stimuli with dif-ferent frequencies to certain commands to control external devices.In order to explore the capacitability of AR-BCI on the number of stimuli and the influence of the number of multi-target stimuli on the classification accuracy of AR-BCI,4 layouts of stimuli with different numbers are designed in this study and displayed through HoloLens (AR) glasses.The comparative analysis shows that the classification accuracy of the 4 layouts gradually decreases with the increase of the number of stimuli,and the location of stimuli affects the accuracy of stimulus classification.In the similar experimental paradigm,the classification results of PC screen and AR display terminals are compared,and it is found that the increasing number of stimuli has a great impact on the classification performance of AR-BCI.Current study indicates that the amount of stimulus is a key factor affecting the construction of AR-BCI in AR environment.

Key words: Brain-computer interfaces, Steady-state visual evoked potentials, Augmented reality, Stimuli number

中图分类号: 

  • TP391.9
[1]JAFRI S R A,HAMID T,MAHMOOD R,et al.Wireless Brain Computer Interface for Smart Home and Medical System[J].Wireless Personal Communications,2019,106(5):2163-2177.
[2]COOGAN C G,HE B.Brain-Computer Interface Control in aVirtual Reality Environment and Applications for the Internet of Things[J].IEEE Access,2018,6(4):10840-10849.
[3]MAO X,LI W,LEI C,et al.A Brain-Robot Interaction System by Fusing Human and Machine Intelligence[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2019,27(10):533-542.
[4]TIDONI E,GERGONDET P,FUSCO G,et al.The Role of Audio-Visual Feedback in a Thought-Based Control of a Humanoid Robot:A BCI Study in Healthy and Spinal Cord Injured People[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2017,25(12):772-781.
[5]ZHANG Y,XU P,LIU T,et al.Multiple Frequencies Sequential Coding for SSVEP Based Brain ComputerInterface[J].Plos One,2012,7(3):e29519.
[6]MARTISIUS I,DAMASEVICIUS R.A Prototype SSVEPBased Real Time BCI Gaming System[J].Computational Intelligence and Neuroscience,2016,2016:386142.
[7]WONG C M,TANG Q,JANIR N,et al.A Multi-Channel SSVEP-based BCI for Computer Games with Analogue Control[C]//IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications.IEEE,2015:1-6.
[8]ANGELA R,FRANCESCA S,LUCA S,et al.On the Relationship Between Attention Processing and P300-Based Brain Computer Interface Control in Amyotrophic Lateral Sclerosis[J].Frontiers in Human Neuroscience,2018,12:165.
[9]YIN R,CAO Y,JIANG J,et al.Design and Implementation of Exoskeleton Control System Based on Motor Imagery Brain Computer Interface[J].Space Medicine & Medical Engineering,2020,33(3):208-213.
[10]YIN E,ZHOU Z,JIANG J,et al.A Dynamically Optimized SSVEP Brain-Computer Interface (BCI) Speller[J].IEEE Transa-ctions on Biomedical Engineering,2015,62(6):1447-1456.
[11]CHENG M,GAO X R,GAO S K,et al.Design and implementation of a brain-computer interface with high transfer rates[J].IEEE Transactions on Biomedical Engineering,2002,49(10):1181-1186.
[12]WANG Y,GAO X,HONG B,et al.Brain-Computer Interfaces Based on Visual Evoked Potentials[J].IEEE Engineering in Medicine and Biology Magazine,2008,27(5):64-71.
[13]LIN J,SHIEH C.A Ssvep-Based Bci System and its Applications[J].International Journal of Advanced Computer Science and Applications,2014,5(10):55-60.
[14]CHEN X,ZHAO B,WANG Y,et al.Control of a 7-DOF Robo-tic Arm System with an SSVEP-Based BCI[J].International Journal of Neural Systems,2018,28(8):1850018.
[15]SI-MOHAMMED H,PETIT J,JEUNET C,et al.Towards BCI-based interfaces for augmented reality:Feasibility,design and evaluation[J].IEEE Transactions on Visualization and Compu-ter Graphics,2020,26(3):1608-1621.
[16]CHEN X,WANG Y,GAO S,et al.Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface[J].Journal of Neural Engineering,2015,12(4):046008.
[17]NAKANISHI M,WANG Y,CHEN X,et al.Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis[J].IEEE Transactions on Biomedical Engineering,2017,65(1):104-112.
[18]KE Y,LIU P,AN X,et al.An online SSVEP-BCI system in an optical see-through augmented reality environment[J].Journal of Neural Engineering,2020,17(1):016066.
[19]MANYAKOV N V,CHUMERIN N,ROBBEN A,et al.Sampled sinusoidal stimulation profile and multichannel fuzzy logic classification for monitor-based phase-coded SSVEP brain-computer interfacing[J].Journal of Neural Engineering,2013,10(3):036011.
[20]LIN Z,ZHANG C,WU W,et al.Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs[J].IEEE Transactions on Biomedical Engineering,2006,53(12):2610-2614.
[1] 程时伟, 陈一健, 徐静如, 张柳新, 吴剑锋, 孙凌云. 一种基于脑电信号的眼动方向分类方法[J]. 计算机科学, 2020, 47(4): 112-118.
[2] 何艳, 张晨阳. 基于Unity的神经反馈干预系统设计与实现[J]. 计算机科学, 2020, 47(11A): 579-583.
[3] 王静, 司书建. 面向脑机接口技术的属性可撤销访问控制方案[J]. 计算机科学, 2018, 45(9): 187-194.
[4] 马潇,朱晓军. 基于小波包的LMD在EEG信号分析中的研究[J]. 计算机科学, 2016, 43(6): 112-115.
[5] 王巍,王志强,赵继军,申艳光. 基于移动平台的增强现实研究[J]. 计算机科学, 2015, 42(Z11): 510-519.
[6] 张国亮,吴琰翔,王展妮,王田. 基于视觉标记的增强现实系统建模及配准误差问题研究[J]. 计算机科学, 2015, 42(6): 299-302.
[7] 路晓静,黄向生. 一种快速的空间变换模型计算方法[J]. 计算机科学, 2014, 41(3): 279-281.
[8] 孙 源,陈 靖. 智能手机的移动增强现实技术研究[J]. 计算机科学, 2012, 39(Z6): 493-498.
[9] . 脑机接口(BCI)系统的实时数据传输技术研究[J]. 计算机科学, 2007, 34(9): 107-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨羽琦,章国安,金喜龙. 车载自组织网络中基于车辆密度的双簇头路由协议[J]. 计算机科学, 2018, 45(4): 126 -130 .
[2] 王振武,吕小华,韩晓辉. 基于四叉树分割的地形LOD技术综述[J]. 计算机科学, 2018, 45(4): 34 -45 .
[3] 戴文静, 袁家斌. 隐含子群问题的研究现状[J]. 计算机科学, 2018, 45(6): 1 -8 .
[4] 敖权,陆慧梅,向勇,曹睿东. 基于QEMU的Linux应用异常通信行为分析[J]. 计算机科学, 2018, 45(5): 89 -96 .
[5] 罗建桢,蔡君,刘燕,赵慧民. 一种基于内容流行度和社团重要度的ICN缓存与替换策略[J]. 计算机科学, 2018, 45(7): 116 -121 .
[6] 刘枭, 王晓国. 基于概率图的银行电信诈骗检测方法[J]. 计算机科学, 2018, 45(7): 122 -128 .
[7] 王蓉, 刘遵仁, 纪俊. 基于投票式属性重要度的快速属性约简算法[J]. 计算机科学, 2018, 45(7): 197 -201 .
[8] 何晓俊, 吴梦麟, 范雯, 袁松涛, 陈强. 基于三维限制区域生长的SD-OCT中浆NRD病变区域分割[J]. 计算机科学, 2018, 45(6A): 187 -192 .
[9] 彭龑,吴兆强,张景扩,陈闰雪. 一种改进差分算法及其在QRS波检测中的应用研究[J]. 计算机科学, 2018, 45(6A): 588 -590 .
[10] 高鹏, 刘芸江, 高维廷, 李曼, 陈娟. 基于可信度的双门限DMM协作频谱感知算法[J]. 计算机科学, 2018, 45(9): 166 -170 .