计算机科学 ›› 2021, Vol. 48 ›› Issue (6A): 414-419.doi: 10.11896/jsjkx.200900173

• 网络&通信 • 上一篇    下一篇

卫星双极化MIMO系统极化鉴别率影响分析

冷悦, 谢亚琴, 李鹏   

  1. 南京信息工程大学电子与信息工程学院 南京210044
  • 出版日期:2021-06-10 发布日期:2021-06-17
  • 通讯作者: 李鹏(peng.li@nuist.edu.cn)
  • 作者简介:yueleng8013@163.com
  • 基金资助:
    国家自然科学基金项目(61501244)

Effect of Cross-polarization for Dual-polarized MIMO Channel in Satellite Communications

LENG Yue, XIE Ya-qin, LI Peng   

  1. School of Electricity and Information Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China
  • Online:2021-06-10 Published:2021-06-17
  • About author:LENG Yue,born in 1996,postgraduate.Her main research interests include sa-tellite communication and so on.
    LI Peng,born in 1984,Ph.D,professor.His main research interests include wireless communication and satellite communication.
  • Supported by:
    National Natural Science Foundation of China(61501244).

摘要: MIMO(Multiple Input Multiple Output)技术与卫星通信相结合,能够充分利用空间分集,在不增加额外功率和带宽的情况下提高增益。在单卫星系统中,由于卫星上的空间大小限制,不利于获得空间分集和复用增益,因此通常考虑利用不同的极化天线构建多天线环境以获得相应增益。文中提出了一种分析交叉极化鉴别率(Cross Polar Discrimination,XPD)对单卫星双极化MIMO通信系统的影响的方法。推导了单卫星双极化MIMO系统中接收天线的SINR(Signal-to-Interference and Noise Ratio),并从误码率和信道容量两个方面分析了不同交叉极化干扰系数在开阔区域、郊区、市区3种环境下对星地链路的影响。仿真结果表明,交叉极化干扰系数越小,系统BER(Bit Error Rate)性能越好,信道容量越大,且信号在市区环境下传输时,信道容量高于开阔区域与郊区。

关键词: MIMO, 卫星通信, 双极化, 信道容量, SINR

Abstract: The combination of MIMO(multiple input multiple output) technology and satellite communications (SATCOM) canmake full use of space diversity and improve gain without adding additional power and bandwidth.In a mobile satellite system,due to the limitation of the space size on the satellite,it is not conducive to obtaining spatial diversity and multiplexing gains,so it is generally considered to construct a multi-antenna environment with different polarized antennas to obtain corresponding gains.This paper presents a method to analyze the impact of the Cross Polar Discrimination (XPD) on a single satellite dual-polarized MIMO communication system.In a polarization diversity MIMO satellite system model,through simulation from two aspects of bit error rate and channel capacity,different cross-polarization interference coefficients are evaluated in three scenarios:open area,suburban,and urban areas.The results show that the smaller the cross-polarization interference coefficient,the better the system BER(Bit Error Rate) performance and the larger the channel capacity.Moreover,when a signal is transmitted in urban areas,the channel capacity is higher than that in open area and suburban.

Key words: MIMO, Satellite communications, Dual-Polarized, Channel capacity, SINR

中图分类号: 

  • TN927.2
[1] DENNIS R.Satellite Communication[M].Beijing:Posts and Te-lecommunications Press,2002:1-2.
[2] WU J J.Study on the Channel Capacity and the Space TimeCoding under MIMO Satellite Channel[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2016.
[3] ARAPOGLOU P,BURZIGOTTI P,et al.To MIMO or Not To MIMO in Mobile Satellite Broadcasting Systems[J].IEEE Transactions on Wireless Communications,2011,10(9):2807-2811.
[4] VASSEUR H.Degradation of availability performance in dual-polarized satellite communications systems[J].IEEE Transactions on Communications,2000,48(3):465-472.
[5] ZHANG Q,CHEN D,XIAO Y X,et al.MIMO Application in Satellite Communication System[J].Space Electronic Technology,2018,175(1):57-62.
[6] WANG X,QI C.Algorithm for modeling dual-polarized MIMO channel in land mobile satellite communications[C]//International Conference on Wireless Communications & Signal Processing.IEEE,2017.
[7] NABAR R U,BOLCSKEI H,ERCEG V,et al.Performance of multiantenna signaling techniques in the presence of polarization diversity[J].IEEE Transactions on Signal Processing,2002,50(10):2553-2562.
[8] SELLATHURAI M,GUINAND P,LODGE J.Space-Time Coding in Mobile Satellite Communications Using Dual-Polarized Channels[J].IEEE Transactions on Vehicular Technology,2006,55(1):188-199.
[9] SCHWARZ R T,DELAMOTTE T,STOREK K U,et al.MIMO Applications for Multibeam Satellites[J].IEEE Transactions on Broadcasting,2019,65(4):664-681.
[10] CHARILAOS K,ATHANASIOS D P,PANTELIS D A,et al.MIMO dual polarized fixed satellite systems above 10 GHz:channel modeling and outage capacity evaluation[C]//European Conference on Antennas & Propagation.IEEE,2015,30(3):496-503.
[11] YUAN J J,LIU F F,GUO C,et al.On performance of cross-polarization discrimination com-pensation algorithm based on polarization modulation in presence of channel estimation error[J].Computer Enfineering and Applications,2016,52(S1):145-150.
[12] GUO C,CHEN S,FENG C,et al.Correlation-Statistics-BasedSpectrum Sensing Exploiting Energy and Polarization for Dual-Polarized Cognitive Radios[J].IEEE Transactions on Wireless Communications,2015,14(3):1533-1554.
[13] ZHANG W C.Design and performance analysis of downlink precoding in massive MIMO systems[D].Nanjing,Jiangsu,China:Southeast University,2015.
[14] SHU F,LI J,GU C,et al.Probability Density Analysis of SINR in Massive MIMO Downlink Using Matched Filter Beamformer[J].Journal of Data Acquisition and Processing,2015,30(3):496-503.
[15] BALACHANDER R,WILLIAM G C,et al.MIMO Applicability to UHF SATCOM[J].GLOCOM,2016.
[16] WANG C T.Satellite communication system[M].Beijing:National Defense Industry Press.2012.
[17] ZHENG Z.Measurement-Based research on the massive MIMO channel propagation characterics and modeling[D].Beijing:Beijing University of Posts and Telecommunications,2018.
[18] WANG W Y,CHEN J S.Study on Cross-polarization Interference Cancellation Technology[J].Telecommunication Enginee-ring,2013,53(6):707-710.
[1] 杜晨慧, 向思思, 黄得刚, 陈朗. 民机机上联网航空领域现状分析[J]. 计算机科学, 2021, 48(6A): 364-368.
[2] 陈钱, 周杰, 邵根富. 角度域任意功率谱MIMO信道特征计算[J]. 计算机科学, 2020, 47(6): 271-275.
[3] 田苗苗, 王祖林, 徐迈. 基于认知无线电的DVB-S2信号接收与解析[J]. 计算机科学, 2020, 47(4): 226-232.
[4] 李豪,崔新凯,高向川. 大规模MIMO室外无线光通信系统中基于分段高斯近似的最大似然盲检测算法[J]. 计算机科学, 2020, 47(3): 255-260.
[5] 廖勇, 杨馨怡, 夏茂菡, 王博, 李守智, 沈轩帆. 高速移动场景下基于贪婪算法的改进模代数预编码[J]. 计算机科学, 2019, 46(8): 121-126.
[6] 杨柳, 王闯, 王俊毅. 一种空间信息网络体系架构的设计[J]. 计算机科学, 2019, 46(6A): 309-311.
[7] 程珍, 林飞, 赵慧婷, 章益铭. 基于用户间干扰的分子通信模型的信道容量分析[J]. 计算机科学, 2019, 46(4): 112-117.
[8] 袁伟伟,孟繁伦,彭钧,孙宵,刘日初. 一种基于TOPSIS的卫星资源选择模型[J]. 计算机科学, 2018, 45(6A): 275-278.
[9] 姚信威,钟礼斌,王万良,杨双华. 基于混合储能结构的能量捕获无线通信信道容量分析[J]. 计算机科学, 2018, 45(2): 165-170.
[10] 王艳丽, 阴国富, 金蓉. 一种新的传感器网络能量收集优化技术[J]. 计算机科学, 2018, 45(11): 82-86.
[11] 胡婧,边东明,谢智东,李永强. 应用形态学滤波的卫星通信窄带干扰检测新方法[J]. 计算机科学, 2016, 43(10): 120-124.
[12] 陈培磊,刘萍. 基于BD预编码和时分复用的MIMO广播传输方案[J]. 计算机科学, 2014, 41(Z11): 168-169.
[13] 徐其乐,陈建州,刘立祥. GEO卫星通信系统中MF-TDMA信道分配算法研究[J]. 计算机科学, 2014, 41(4): 40-43.
[14] 袁伟伟,端义锋,胡谷雨,王志明,朱宝山. RABOLC—一种新的卫星通信网评估本体构建方法[J]. 计算机科学, 2013, 40(4): 122-126.
[15] 曾宇辉,尚鹏。朱光喜,吴伟民. 一种基于斜投影的预编码技术研究[J]. 计算机科学, 2011, 38(9): 64-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 方磊, 武泽慧, 魏强. 二进制代码相似性检测技术综述[J]. 计算机科学, 2021, 48(5): 1 -8 .
[2] 朱雨, 庞建民, 徐金龙, 陶小涵, 王军. 面向SW26010处理器的三维Stencil自适应分块参数算法[J]. 计算机科学, 2021, 48(6): 10 -18 .
[3] 冯芙蓉, 张兆功. 目标轮廓检测技术新进展[J]. 计算机科学, 2021, 48(6A): 1 -9 .
[4] 孙正, 张小雪. 生物光声成像中声反射伪影抑制方法的研究进展[J]. 计算机科学, 2021, 48(6A): 10 -14 .
[5] 周欣, 刘硕迪, 潘薇, 陈媛媛. 自然交通场景中的车辆颜色识别[J]. 计算机科学, 2021, 48(6A): 15 -20 .
[6] 黄雪冰, 魏佳艺, 沈文宇, 凌力. 基于自适应加权重复值滤波和同态滤波的MR图像增强[J]. 计算机科学, 2021, 48(6A): 21 -27 .
[7] 江妍, 马瑜, 梁远哲, 王原, 李光昊, 马鼎. 基于分数阶麻雀搜索优化OTSU肺组织分割算法[J]. 计算机科学, 2021, 48(6A): 28 -32 .
[8] 张子丞, 谭志苇, 张晨瑞, 王旋, 刘晓璇, 俞一彪. 基于高低频带对数能量谱比贝叶斯决策的语音端点检测[J]. 计算机科学, 2021, 48(6A): 33 -37 .
[9] 崔雯昊, 蒋慕蓉, 杨磊, 傅鹏铭, 朱凌霄. 结合MCycleGAN与RFCNN实现太阳斑点图高分辨重建[J]. 计算机科学, 2021, 48(6A): 38 -42 .
[10] 田洋, 毕秀丽, 肖斌, 李伟生, 马建峰. 基于离散切比雪夫变换的图像接缝裁剪篡改检测[J]. 计算机科学, 2021, 48(6A): 43 -50 .