计算机科学 ›› 2021, Vol. 48 ›› Issue (6A): 57-62.doi: 10.11896/jsjkx.200900218
周俊1,2, 王帅3, 刘凡漪4
ZHOU Jun1,2, WANG Shuai3, LIU Fan-yi4
摘要: 虹膜特征提取是虹膜识别中的关键环节。小波方法在提取虹膜特征时未对分解后的高频空间进一步细化分解,而虹膜纹理特征较多地蕴含在高频空间中,因此提取的虹膜特征在表示特征能力上存在不足。针对此类问题,提出一种基于小波包多尺度分解的虹膜识别方法,利用阈值将小波包分解后第二层对角高频子带图调制为虹膜特征码,利用海明距离对特征进行识别。对108类人眼虹膜图像进行特征提取与匹配,分解小波采用sym2小波,共进行5 350次特征匹配,正确识别率达到98.5%,在识别性能上优于Boles的小波变换过零点法和Lim的二维Haar小波变换法,仅次于Daugman的二维Gabor方法。
中图分类号:
[1] TIAN Q C,ZHANG R S.Overview of biometric recog-nition technology [J].Computer Application Research,2010,26(12):4401-4410. [2] DAUGMAN J.High confidence visual recognition of persons by a test of statistical independence[J],IEEE Transactions on Pattern Analysis Machine Intelligence,1993,15(11):1148-1161. [3] WILDES R,ASMUTH J C.A system for automated iris recognition[C]//Proceedings of the 2nd IEEE Workshop on Applicant Computer Vision.Sarasota,FL USA,1994:121-128. [4] HE F,HAN Y,WANG H,et al.Deep learning architecture for iris recognition based on optimal Gabor filters and belief network[J].Journal of Electronic Imaging,2017,26(2):023005. [5] YANG X,ZHU X D,LIU Y N,et al.Iris recognition methodbased on block wavelet feature combined with BP neural network [J].Computer Engineering and Applications,2019,55(18):132-139. [6] ZHENG Y P,LI G Y,LI Y.A review of research on the application of deep learning in image recognition[J].Computer Engineering and Applications,2019,55(12):20-36. [7] LIMS S,LEE K,BYEON O,et al.Efficient iris recognitionthrough improvement of feature vector and classifier[J].ETRI Journal,2001,23(2):61-70. [8] BOLES W W,BOASHASH B.A human identification techni-que using images of the iris and wavelet transform[J].IEEE Transactions on Signal Processing,1998,46(4):1185-1188. [9] BAIY C.Research on iris recognition method of visible lightmobile terminal [D].Shenyang:Shenyang University of Technology,2019. [10] KANG B J,PARK K R.A robust eyelash detection based on iris focus assessment [J].Pattern Recognition,2007,28(13):1630-1639. [11] DAUGMAN J.Statistical richness of visual phase information:Update on recognizing persons by iris patterns[J].International Journal of Computer Vision,2001,45(1):25-38. [12] MA L,TAN T,WANG Y,et al.Personal Recognition Based on Iris Texture Analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(12):1519-1533. [13] MASEK L.Recognition of human iris patterns for biometricidentification[R].Technical Report,School of Computer Science and Software Engineering,University of Western Australia,2003. [14] YANG J G.Wavelet analysis and its engineering application[M].Beijing:Mechanical Industry Press,2009. [15] SUNG H,LIM J,PARK J.Iris Recognition Using CollaretteBoundary Localization[C]//Proceedings of the 17th International Conference on Pattern Recognition.Washington,DC,USA 2004:857-860. [16] FU H Z,XU Y W,LIN S,et al.Angle-Closure Detection in Anterior Segment OCT Based on Multilevel DeepNetwork[J].IEEE Transactions on Cybernetics,2020,50(7). [17] LIU S,LIU Y N,ZHU X D,et al.Iris double recognition based on modified evolutionary neural network[J].Journal of Electronic Imaging,2017,26(6):063023. [18] TIAN Q C.Principle and Algorithm of Iris Recognition [M].Beijing:National Defense Industry Press,2010. [19] JIANG H,MENG D T.Iris recognition based on CS-LBPand adaptive neural network[J].Journal of Northeast Normal University (Natural Science Edition),2018,50(3):58-64. [20] Institute of Automation,Chinese Academy of Sciences.CASIA iris image database [EB/OL].(2007-12-23).http://www.cbsr.ia.ac.cn/English/Irisdatabase.asp. |
[1] | 邵超, 宋淑米. 基于信任关系下用户兴趣偏好的协同过滤推荐算法[J]. 计算机科学, 2021, 48(6A): 240-245. |
[2] | 段菲, 王慧敏, 张超. 面向数据表示的Cauchy非负矩阵分解[J]. 计算机科学, 2021, 48(6): 96-102. |
[3] | 钟岳, 方虎生, 张国玉, 王钊, 朱经纬. 基于9轴姿态传感器的CNN旗语动作识别方法[J]. 计算机科学, 2021, 48(6): 153-158. |
[4] | 宋慧超, 刘晓楠, 王洪, 尹美娟, 江舵. 基于Grover搜索算法的整数分解[J]. 计算机科学, 2021, 48(4): 20-25. |
[5] | 郝志峰, 廖祥财, 温雯, 蔡瑞初. 基于多上下文信息的协同过滤推荐算法[J]. 计算机科学, 2021, 48(3): 168-173. |
[6] | 李雨蓉, 刘杰, 刘亚林, 龚春叶, 王勇. 面向语音分离的深层转导式非负矩阵分解并行算法[J]. 计算机科学, 2020, 47(8): 49-55. |
[7] | 杨德成, 李凤岐, 王祎, 王胜法, 殷慧殊. 智能3D打印路径规划算法[J]. 计算机科学, 2020, 47(8): 267-271. |
[8] | 刘君良, 李晓光. 个性化推荐系统技术进展[J]. 计算机科学, 2020, 47(7): 47-55. |
[9] | 李向利, 贾梦雪. 基于预处理的超图非负矩阵分解算法[J]. 计算机科学, 2020, 47(7): 71-77. |
[10] | 吴静, 周先春, 徐新菊, 黄金. 三维块匹配波域调和滤波图像去噪[J]. 计算机科学, 2020, 47(7): 130-134. |
[11] | 方梦琳, 唐文兵, 黄鸿云, 丁佐华. 基于模糊信息分解与控制规则的移动机器人沿墙导航[J]. 计算机科学, 2020, 47(6A): 79-83. |
[12] | 赵晓东, 苏公瑾, 李克利, 成杰, 徐江峰. 一种融合EMD分解和LSTM网络的频谱占用度预测模型[J]. 计算机科学, 2020, 47(6A): 294-298. |
[13] | 张德干, 范洪瑞, 龚倡乐, 高瑾馨, 张婷, 赵彭真, 陈晨. 一种基于张量的车辆交通数据缺失估计新方法[J]. 计算机科学, 2020, 47(6A): 505-511. |
[14] | 马海江. 基于卷积神经网络与约束概率矩阵分解的推荐算法[J]. 计算机科学, 2020, 47(6A): 540-545. |
[15] | 刘纪芹, 史开泉. 大数据分解-融合及其智能获取[J]. 计算机科学, 2020, 47(6): 66-73. |
|