计算机科学 ›› 2021, Vol. 48 ›› Issue (10): 343-350.doi: 10.11896/jsjkx.201100009

• 交叉&前沿 • 上一篇    下一篇

基于改进多目标进化算法的微服务用户请求分配策略

朱汉卿, 马武彬, 周浩浩, 吴亚辉, 黄宏斌   

  1. 国防科技大学信息系统工程重点实验室 长沙410073
  • 收稿日期:2020-11-02 修回日期:2021-03-01 出版日期:2021-10-15 发布日期:2021-10-18
  • 通讯作者: 黄宏斌(hbhuang@nudt.edu.cn)
  • 作者简介:zhuhanqing258@foxmail.com
  • 基金资助:
    中国博士后科学基金(2019M664033)

Microservices User Requests Allocation Strategy Based on Improved Multi-objective Evolutionary Algorithms

ZHU Han-qing, MA Wu-bin, ZHOU Hao-hao, WU Ya-hui, HUANG Hong-bin   

  1. Key Laboratory of Information System Engineering,National University of Defense Technology,Changsha 410073,China
  • Received:2020-11-02 Revised:2021-03-01 Online:2021-10-15 Published:2021-10-18
  • About author:ZHU Han-qing,born in 1997,postgra-duate.His main research interests include microservices and scheduling theory.
    HUANG Hong-bin,born in 1975,Ph.D,professor,Ph.D supervisor.His main research interests include CPS and data analysis.
  • Supported by:
    Chinese Postdoctoral Science Foundation (2019M664033).

摘要: 如何对基于微服务架构的系统进行并发用户请求的分配以使得时间、成本和均衡性等目标得到优化,是面向微服务的应用系统需关注的重要问题之一。现有的基于固定规则的用户请求分配策略仅着重于负载均衡性的解决,难以处理多目标需求间的平衡。为此,文中提出以请求处理总时间、负载均衡率和通信传输总距离为多个目标的微服务用户请求分配模型,研究并发用户请求在部署于不同资源中心的多个微服务实例间的分配策略,并使用基于改进初始解生成策略、交叉算子和变异算子的多目标进化算法对该问题进行求解。在不同规模的数据集上进行多次实验,结果表明,提出的方法与常用的多目标进化算法和传统的基于固定规则的方法相比,能够更好地处理多个目标间的平衡,具有更好的求解性能。

关键词: 微服务, 请求分配, 多目标优化, 进化算法, 并发请求

Abstract: How to allocate concurrent user requests to a system based on a microservices architecture to optimize objectives such as time,cost,and load balance,is one of the important issues that microservices-based application systems need to pay attention to.The existing user requests allocation strategy based on fixed rules only focuses on the solving of load balance,and it is difficult to deal with the balance between multi-objective requirements.A microservices user requests allocation model with multiple objectives of total requests processing time,load balancing rate,and total communication transmission distance is proposed to study the allocation of user requests among multiple microservices instances deployed in different resource centers.The multi-objective evolutionary algorithms with improved initial solutions generation strategy,crossover operator and mutation operator are used to solve this problem.Through many experiments on data sets of different scales,it is shown that the proposed method can better handle the balance between multiple objectives and has better solving performance,compared with the commonly used multi-objective evolutionary algorithms and traditional methods based on fixed rules.

Key words: Microservices, Requests allocation, Multi-objective optimization, Evolutionary algorithm, Concurrent requests

中图分类号: 

  • TP311.1
[1]THONE S,JOHANNE S.Microservices[J].IEEE Software,2015,32(1):116.
[2]LI Z H.Analysis of the development and impact of microservices architecture[J].China CIO News,2017(1):154-155.
[3]MA S P,FAN C Y,CHUANG Y,et al.Using Service Depen-dency Graph to Analyze and Test Microservices (Conference Paper)[J].Proceedings-International Computer Software and Applications Conference,2018,2:81-86.
[4]LEITNER P,CITO J,STOCKLI E.Modelling and ManagingDeployment Costs of Microservice-Based Cloud Applications[C]//IEEE/ACM 9TH International Conference on Utility and Cloud Computing (UCC).2016:165-174.
[5]CORNEL B,HAMZEH K,MARIOS F,et al.Delivering Elastic Containerized Cloud Applications to Enable DevOps[C] //IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS).2017:65-75.
[6]REN N N.Research and Implementation of Performance Optimization Technology of Microservice-based Applications in Clouds [D].Xi'an:Xidian University,2018.
[7]MA W B,WANG R,WANG W C,et al.Micro-service composition deployment and scheduling strategy based on evolutionary multi-objective optimization[J].Systems Engineering and Electronics,2020,42(1):90-100.
[8]ZHOU X,PENG X,XIE T,et al.Benchmarking Microservice Systems for Software Engineering Research[C] //40th ACM/IEEE International Conference on Software Engineering (ICSE).2018:323-324.
[9]FU L L,ZOU S W.Research on Container Deployment of Microservices[J].Computing Technology and Automation,2019,38(4):151-155.
[10]XU C J,ZHOU X,PENG X,et al.Microservice System Oriented Runtime Deployment Optimization[J].Computer Applications and Software,2018,35(10):85-93.
[11]XIA T Y,XU J Q,JIANG M.Research of Multi-Objective Optimization Based Algorithm for Docker-Microservices Placement[J].Artificial Intelligence and Robotics Research,2017,6(2):41-55.
[12]MARIA F,ANTONIO C,RAJIV R,et al.Open Issues in Sche-duling Microservices in the Cloud[J].IEEE Cloud Computing,2016,3(5):81-88.
[13]ION-DORINEL F,FLORIN P,CRISTINA S,et al.Microser-vices Scheduling Model Over Heterogeneous Cloud-edge Environments As Support for IoT Applications[J].IEEE Internet of Things Journal,2018,5(4):2672-2681.
[14]BAO L,CHASE W,BU X X,et al.Performance modeling and workflow scheduling of microservice-based applications in clouds (Article)[J].IEEE Transactions on Parallel and Distributed Systems,2019,30(9):2101-2116.
[15]TANG Y.Design and Implementation of Job Scheduling System Based on Microservice Architecture[D].Chengdu:Southwest Jiaotong University,2019.
[16]YANG L,CAO J N,LIANG G Q,et al.Cost Aware ServicePlacement and Load Dispatching in Mobile Cloud Systems[J].IEEE Transactions on Computers,2016,65(5):1440-1452.
[17]ZHENG X J,LI J.Cost optimization of request dispatching and container deployment in cloudlets[J].Journal of University of Science and Technology of China,2019,49(10):820-827.
[18]XU Y.Research and implementation of related technology in web ar service platform based on micro service architecture[D].Beijing:Beijing University Of Posts And Telecommunications,2019.
[19]TAO X Y.Research on Techniques of Flow Scheduling and Request Allocation in Data Centers[D].Dalian:Dalian University of Technology,2019.
[20]ZHANG T F,MA Y,LI L,et al.Improved Genetic Algorithm for Flexible Job Shop Scheduling Problem[J].Journal of Chinese Computer Systems,2017,38(1):129-132.
[21]DEB K,JAIN H.An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach,Part I:Solving Problems With Box Constraints[J].IEEE Transactions on Evolutionary Computation,2014,18(4):577-601.
[22]WENG L G,WANG A,XIA H,et al.Improved SPEA2 based on local search[J].Application Research of Computers,2014(9):2617-2619.
[23]GAO J L,XING Q H,FAN C L,et al.Double adaptive selection strategy for MOEA/D[J].Journal of Systems Engineering and Electronics,2019,30(1):132-143.
[24]LEANDRO L M,DIRK S,YAO X.Improved Evolutionary Algorithm Design for the Project Scheduling Problem Based on Runtime Analysis[J].IEEE Transactions on Software Enginee-ring,2014,40(1):83-102.
[1] 李笠, 李广鹏, 常亮, 古天龙. 约束进化算法及其应用研究综述[J]. 计算机科学, 2021, 48(4): 1-13.
[2] 陆懿帆, 曹芮浩, 王俊丽, 闫春钢. 一种基于微服务的检察业务服务封装方法[J]. 计算机科学, 2021, 48(2): 33-40.
[3] 崔国楠, 王立松, 康介祥, 高忠杰, 王辉, 尹伟. 结合多目标优化算法的模糊聚类有效性指标及应用[J]. 计算机科学, 2021, 48(10): 197-203.
[4] 何志鹏, 李瑞琳, 牛北方. 高可用弹性宏基因组学计算平台[J]. 计算机科学, 2021, 48(1): 326-332.
[5] 张清琪, 刘漫丹. 复杂网络社区发现的多目标五行环优化算法[J]. 计算机科学, 2020, 47(8): 284-290.
[6] 郑友莲, 雷德明, 郑巧仙. 求解高维多目标调度的新型人工蜂群算法[J]. 计算机科学, 2020, 47(7): 186-191.
[7] 董明刚, 弓佳明, 敬超. 基于谱聚类的多目标进化社区发现算法研究[J]. 计算机科学, 2020, 47(6A): 461-466.
[8] 于曼, 黄凯, 张翔. 基于微服务架构的ETC系统设计[J]. 计算机科学, 2020, 47(6A): 643-647.
[9] 赵松辉, 任志磊, 江贺. 软件升级问题的多目标优化方法[J]. 计算机科学, 2020, 47(6): 16-23.
[10] 夏春艳, 王兴亚, 张岩. 基于多目标优化的测试用例优先级排序方法[J]. 计算机科学, 2020, 47(6): 38-43.
[11] 孙敏, 陈中雄, 叶侨楠. 云环境下基于HEDSM的工作流调度策略[J]. 计算机科学, 2020, 47(6): 252-259.
[12] 吴文峻, 于鑫, 蒲彦均, 汪群博, 于笑明. 微服务时代的复杂服务软件开发[J]. 计算机科学, 2020, 47(12): 11-17.
[13] 杨浩, 陈红梅. 基于量子进化算法的非平衡数据混合采样算法[J]. 计算机科学, 2020, 47(11): 88-94.
[14] 王绪亮, 聂铁铮, 唐欣然, 黄菊, 李迪, 闫铭森, 刘畅. 流式数据处理的动态自适应缓存策略研究[J]. 计算机科学, 2020, 47(11): 122-127.
[15] 王瑄, 毛莺池, 谢在鹏, 黄倩. 基于差分进化的推断任务卸载策略[J]. 计算机科学, 2020, 47(10): 256-262.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[2] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[3] 韩奎奎,谢在鹏,吕鑫. 一种基于改进遗传算法的雾计算任务调度策略[J]. 计算机科学, 2018, 45(4): 137 -142 .
[4] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[5] 丁舒阳,黎冰,侍洪波. 基于改进的离散PSO算法的FJSP的研究[J]. 计算机科学, 2018, 45(4): 233 -239 .
[6] 秦克云,林洪. 决策形式背景属性约简的关系[J]. 计算机科学, 2018, 45(4): 257 -259 .
[7] 朱金彬,武继刚,隋秀峰. 基于极大团的边缘云节点聚合算法[J]. 计算机科学, 2018, 45(4): 60 -65 .
[8] 李珊,饶文碧. 基于视频的矿井中人体运动区域检测[J]. 计算机科学, 2018, 45(4): 291 -295 .
[9] 张盼盼, 彭长根, 郝晨艳. 一种基于隐私偏好的隐私保护模型及其量化方法[J]. 计算机科学, 2018, 45(6): 130 -134 .
[10] 郭莹莹, 张丽平, 李松. 障碍环境中线段组最近邻查询方法研究[J]. 计算机科学, 2018, 45(6): 172 -175 .