计算机科学 ›› 2021, Vol. 48 ›› Issue (12): 1-7.doi: 10.11896/jsjkx.201200108

• 计算机体系结构* 上一篇    下一篇

基于流线的流场可视化绘制方法综述

张倩1,2, 肖丽2,3   

  1. 1 中国工程物理研究院 四川 绵阳621900
    2 北京应用物理与计算数学研究所 北京100080
    3 中物院高性能数值模拟软件中心 北京100088
  • 收稿日期:2020-12-14 修回日期:2021-05-19 出版日期:2021-12-15 发布日期:2021-11-26
  • 通讯作者: 肖丽(xiaoli@iapcm.ac.cn)
  • 作者简介:zhangqian18@gscaep.ac.cn
  • 基金资助:
    国家重点研发计划资助项目(2017YFB0202203)

Review of Visualization Drawing Methods of Flow Field Based on Streamlines

ZHANG Qian1,2, XIAO Li2,3   

  1. 1 China Academy of Engineering Physics,Mianyang,Sichuan 621900,China
    2 Institute of Applied Physics and Computational Mathematics,Beijing 100080,China
    3 CAEP Software Center for High Performance Numerical Simulation,Beijing 100088,China
  • Received:2020-12-14 Revised:2021-05-19 Online:2021-12-15 Published:2021-11-26
  • About author:ZHANG Qian,born in 1995,Ph.D.Her main research interest is scientific visua-lization.
    XIAO Li,born in 1971,master supervisor,researcher,is a member of China Computer Federation.Her main research interest is scientific visualization.
  • Supported by:
    National Key Research and Development Project of China(2017YFB0202203).

摘要: 流场可视化是科学计算可视化中一个重要的分支,主要对计算流体动力学的模拟计算结果进行可视化,给研究人员提供视觉上直观可见的图形图像,方便研究人员进行分析。流场可视化的已知技术包括基于几何的方法(如流线和粒子追踪法)以及基于纹理的方法(如LIC、噪声点、IBFV等)。流线可视化是流场可视化的一个重要且常用的几何可视化手段。在流线可视化的研究中,流线的放置是整个流线可视化的重点,流线的数目和位置影响了整个可视化效果。当流线放置过多时,会造成视觉的杂乱;而流线放置过少会使流场信息表达不完整,无法传递完整的信息给领域专家。为了实现对科学数据的精确显示,流线可视化产生了两个重要的研究方向:种子点的放置和流线的约减。文中介绍了种子点放置方法和流线的约减方法的相关研究,总结了在2D和3D流场上出现的一些问题和采取的解决方案,并针对日益增长的科学数据,提出流线可视化下一步需要解决的问题。

关键词: 流线放置, 种子点生成策略, 流线约减, 流场可视化, 科学计算可视化

Abstract: Flow visualization is an important branch of scientific computational visualization.It mainly visualizes the simulation calculation results of computational fluid dynamics,and provides researchers with visually intuitive graphical images to facilitate researchers' analysis.The known techniques for flow visualization include geometric-based methods:such as streamline,particle tracking methods;and texture-based methods:LIC,spot noise and IBFV.Streamline visualization is an important and commonly used geometric visualization method for flow field visualization.In the study of streamline visualization,the placement of streamline is the focus of the entire streamline visualization,and the number and position of streamline affect the entire visualization effect.When too many streamlines are placed,it will cause visual clutter,and too little cause the flow field information to be incompletely expressed and cannot be transmitted to domain experts.In order to achieve accurate display of scientific data,streamline visualization has generated two important research directions:placement of seed points and reduction of streamline.This article introduces the related research of seed point placement method and streamline reduction method,summarizes some problems and solutions adopted in 2D and 3D flow fields,and proposes the need for streamline visualization in view of the growing scientific data in the future.

Key words: Streamline placement, Seeding strategy, Streamline reduction, Flow visualization, Scientific visualization

中图分类号: 

  • TP391.41
[1]BATCHELOR C K,BATCHELOR G K.An Introduction to Fluid Dynamics[M].Cambridge University Press,2000:46-78.
[2]LI S K,CAI X,WANG W K,et al.Large-scale Flow Field Scientific Visualization[M].National Defense Industry Press,2013:8-12.
[3]OELTZE S,LEHMANN D J,KUHN A,et al.Blood Flow Clustering and Applications Invirtual Stenting of Intracranial Aneurysms[J].IEEE Transactions on Visualization and Computer Graphics,2014,20(5):686-701.
[4]NELSON R C,SAMET H.A Consistent Hierarchical Represen- tation for Vector Data[C]//Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques.1986:197-206.
[5]SCHOUTEN J A.Tensor Analysis for Physicists[M].Courier Corporation,1989:32-45.
[6]LEVOY M.Display of Surfaces from Volume Data[J].IEEE Computer Graphics and Applications,1988,8(3):29-37.
[7]DOWNING J A.The Automatic Construction of Contour Plots with Applications to Numerical Analysis Research[R].Texas Univ Austin Computation Center,1966.
[8]LAWONN K,GASTEIGER R,PREIM B.Adaptive Surface Visualization of Vessels with Embedded Blood Flow Based on the Suggestive Contour Measure[C]//VMV.2013:113-120.
[9]LFFELMANN H,MROZ L,GRLLER E,et al.Stream Arrows:Enhancing the Use of Stream Surfaces for the Visualization of Dynamical Systems[J].The Visual Computer,1997,8(13):359-369.
[10]AGÜÍ J C,HESSELINK L.Flow Visualization and Numerical Analysis of a Coflowing Jet:a Three-dimensional Approach[J].Journal of Fluid Mechanics,1988,191:19-45.
[11]THIELE M R.Streamline Simulation[C]//6th International Forum on Reservoir Simulation.Society of Petroleum Engineers:Schloss Fuschl,Austria,2001:3-7.
[12]THEISEL H,WEINKAUF T,HEGE H C,et al.Stream Line and Path Line Oriented Topology for 2D Time-dependent Vector Fields[C]//IEEE Visualization 2004.IEEE,2004:321-328.
[13]MEHRAN R,MOORE B E,SHAH M.A Streakline Representation of Flow in Crowded Scenes[C]//European Conference on Computer Vision.Berlin:Springer,2010:439-452.
[14]XU L,LEE T Y,SHEN H W.An Information-theoretic Framework for Flow Visualization[J].IEEE Transactions on Visuali-zation and Computer Graphics,2010,16(6):1216-1224.
[15]LI Q Y,WANG N C,YI D Y.Numerical Analysis[M].Beijing:Tsinghua University Press,2008:97-132.
[16]EULER L.Leonhard Euler and the Königsberg Bridges[J]. Scientific American,1953,189(1):66-72.
[17]WILLIAMSON J H.Low-storage Runge-kutta Schemes[J]. Journal of Computational Physics,1980,35(1):48-56.
[18]CARPENTER M H,KENNEDY C A,BIJL H,et al.Fourth-order Runge-Kutta Schemes for Fluid Mechanics Applications[J].Journal of Scientific Computing,2005,25(1):157-194.
[19]ZHENG L,WANG W,LI S.Feature-based Streamline Selection Method for 2D Flow Fields[C]//2015 14th International Conference on Computer-Aided Design and Computer Graphics(CAD/Graphics).IEEE,2015:129-136.
[20]HELMAN J L,HESSELINK L.Visualizing Vector Field Topo- logy in Fluid Flows[J].IEEE Computer Graphics and Applications,1991,11(3):36-46.
[21]LEONARD A.Vortex Methods for Flow Simulation[J].Journal of Computational Physics,1980,37(3):289-335.
[22]TURK G,BANKS D.Image-guided Streamline Placement[C]//Proceedings of the 23rd Annual Conference on Computer Gra-phics and Interactive Techniques.1996:453-460.
[23]MACIEJEWSKI R,ISENBERG T,ANDREWS W M,et al. Measuring Stipple Aesthetics in Hand-drawn and Computer-generated Images[J].IEEE Computer Graphics and Applications,2008,28(2):62-74.
[24]MAO X,HATANAKA Y,HIGASHIDA H,et al.Image-guided Streamline Placement on Curvilinear Grid Surfaces[C]//Proceedings Visualization'98(Cat.No.98CB36276).IEEE,1998:135-142.
[25]LI L,SHEN H W.Image-based Streamline Generation and Rendering[J].IEEE Transactions on Visualization and Computer Graphics,2007,13(3):630-640.
[26]JOBARD B,LEFER W.Creating Evenly-spaced Streamlines of Arbitrary Density[M]//Visualization in Scientific Computing'97.Springer,Vienna,1997:43-55.
[27]JOBARD B,LEFER W.Multiresolution Flow Visualization[J].Journal of WSCG,2001,9(3):34-35.
[28]JOBARD B,LEFER W.Unsteady Flow Visualization by Animating Evenly-spaced Streamlines[C]//Computer Graphics Forum.Oxford,UK and Boston,USA:Blackwell Publishers Ltd,2000:31-39.
[29]LIU Z,MOORHEAD R,GRONER J.An Advanced Evenly- spaced Streamline Placement Algorithm[J].IEEE Transactions on Visualization and Computer Graphics,2006,12(5):965-972.
[30]SPENCER B,LARAMEE R S,CHEN G,et al.Evenly Spaced Streamlines for Surfaces:An Image-based Approach[C]//Computer Graphics Forum.Oxford,UK:Blackwell Publishing Ltd,2009:1618-1631.
[31]LIU Z,MOORHEAD II R J.Robust Loop Detection for Interactively Placing Evenly Placed Streamlines[J].Computing in Science & Engineering,2007,9(4):86-91.
[32]LIU Z,MOORHEAD II R J.Interactive View-driven Evenly Spaced Streamline Placement[C]//Visualization and Data Ana-lysis 2008.International Society for Optics and Photonics,2008:68090A.
[33]ZHANG W,WANG Y,ZHAN J,et al.Parallel Streamline Placement for 2d Flow Fields[J].IEEE Transactions on Visuali-zation and Computer Graphics,2012,19(7):1185-1198.
[34]MEBARKI A,ALLIEZ P,DEVILLERS O.Farthest Point Seeding for Efficient Placement of Streamlines[C]//VIS 05,IEEE Visualization,2005.IEEE,2005:479-486.
[35]SHEWCHUK J R.Triangle:Engineering a 2D Quality Mesh Generator and Delaunay Triangulator[C]//Workshop on Applied Computational Geometry.Berlin:Springer,1996:203-222.
[36]MEBARKI A.Adaptive Distance Grid Based Algorithm for Farthest Point Seeding Streamline Placement[J].Open Computer Science,2016,6(1):91-99.
[37]VERMA V,KAO D,PANG A.A Flow-guided Streamline See- ding Strategy[C]//Proceedings Visualization 2000,VIS 2000(Cat.No.00CH37145).IEEE,2000:163-170.
[38]WU K,LIU Z,ZHANG S,et al.Topology-aware Evenly Spaced Streamline Placement[J].IEEE Transactions on Visualization and Computer Graphics,2009,16(5):791-801.
[39]ZHANG W,DENG J.Topology-driven Streamline Seeding for 2D Vector Field Visualization[C]//2009 IEEE International Conference on Systems,Man and Cybernetics.IEEE,2009:4901-4905.
[40]ZHANG W,SUN B,WANG Y.A Streamline Placement Method Highlighting Flow Field Topology[C]//2010 International Conference on Computational Intelligence and Security.IEEE,2010:238-242.
[41]QIN X,CHEN X,CHEN L,et al.Streamline Uniform Place- ment Algorithm With Dynamic Seed Points[J].IEEE Access,2019,7:113844-113852.
[42]DING Z,ZHANG X,CHEN W,et al.Coherent streamline ge- neration for 2D vector fields[J].Tsinghua Science and Techno-logy,2012,17(4):463-470.
[43]YUSOFF Y A,MOHAMED F,MOKHTAR M K,et al.Magnitude-based Seed Point Placement for Streamlines Generation[C]//2017 IEEE Conference on Big Data and Analytics(ICBDA).IEEE,2017:81-86.
[44]WANG S,YOU R,CHEN Y,et al.Difference-Contribution Strategy for Seeding 2D Streamlines[C]//WSCG 2010:Communication Papers Proceedings.2010.
[45]YE X,KAO D,PANG A.Strategy for Seeding 3D Streamlines[C]//VIS 05,IEEE Visualization,2005.IEEE,2005:471-478.
[46]SHANNON C E.A Mathematical Theory of Communication [J].The Bell System Technical Journal,1948,27(3):379-423.
[47]CHEN Y,COHEN J,KROLIK J.Similarity-guided Streamline Placement with Error Evaluation[J].IEEE Transactions on Visualization and Computer Graphics,2007,13(6):1448-1455.
[48]LI L,HSIEH H H,SHEN H W.Illustrative Streamline Placement and Visualization[C]//2008 IEEE Pacific Visualization Symposium.IEEE,2008:79-86.
[49]MARCHESIN S,CHEN C K,HO C,et al.View-dependent Streamlines for 3D Vector Fields[J].IEEE Transactions on Visualization and Computer Graphics,2010,16(6):1578-1586.
[50]LEE T Y,MISHCHENKO O,SHEN H W,et al.View Point Evaluation and Streamline Filtering for Flow Visualization[C]//2011 IEEE Pacific Visualization Symposium.IEEE,2011:83-90.
[51]DAYING L,DENGMING Z,ZHAOQI W.Streamline Selection Algorithm for Three-dimensional Flow Fields[J].Journal of Computer-Aided Design & Computer Graphics,2015,25(5):666-673.
[52]CHETVERIKOV D,SVIRKO D,STEPANOV D,et al.The Trimmed Iterative Closest Point Algorithm[C]//Object Recognition Supported by User Interaction for Service Robots.IEEE,2002:545-548.
[53]LIKAS A,VLASSIS N,VERBEEK J J.The Global K-means Clustering Algorithm[J].Pattern Recognition,2003,36(2):451-461.
[54]YU H,WANG C,SHENE C K,et al.Hierarchical Streamline Bundles[J].IEEE Transactions on Visualization and Computer Graphics,2011,18(8):1353-1367.
[55]LI Y,WANG C,SHENE C K.Extracting Flow Features Via Supervised Streamline Segmentation[J].Computers & Gra-phics,2015,52:79-92.
[56]MA J,WANG C,SHENE C K.Coherent View-dependent St- reamline Selection for Importance-driven Flow Visualization[C]//Visualization and Data Analysis 2013.International Society for Optics and Photonics,2013:865407.
[57]TAO J,MA J,WANG C,et al.A Unified Approach to Streamline Selection and Viewpoint Selection for 3D Flow Visualization[J].IEEE Transactions on Visualization and Computer Gra-phics,2012,19(3):393-406.
[58]MCLOUGHLIN T,JONES M W,LARAMEE R S,et al.Similarity Measures for Enhancing Interactive Streamline Seeding[J].IEEE Transactions on Visualization and Computer Gra-phics,2012,19(8):1342-1353.
[59]CHEN L,FUJISHIRO I.Optimizing Parallel Performance of Streamline Visualization for Large Distributed Flow Datasets[C]//2008 IEEE Pacific Visualization Symposium.IEEE,2008:87-94.
[1] 马颖异, 李洪平, 郭艺峰. 基于视觉感知的二维线积分卷积矢量场可视化算法[J]. 计算机科学, 2019, 46(6A): 242-245.
[2] 王兰波 蔡勋. 面向对象的可视化应用平台[J]. 计算机科学, 1997, 24(4): 84-87.
[3] 蔡勋 黄朝晖. 高速网络环境中的科学计算可视化[J]. 计算机科学, 1996, 23(4): 24-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李忠. 抗SPA攻击的快速标量乘法[J]. 计算机科学, 2014, 41(Z6): 374 -376 .
[2] 丁剑,韩萌,李娟. 概念漂移数据流挖掘算法综述[J]. 计算机科学, 2016, 43(12): 24 -29 .
[3] 陈德江, 王君, 张浩为. 基于直觉模糊多属性决策的动态威胁评估模型[J]. 计算机科学, 2019, 46(4): 183 -188 .
[4] 蔡莉, 李英姿, 江芳, 梁宇. 面向城市热点区域的不平衡数据聚类挖掘研究[J]. 计算机科学, 2019, 46(8): 16 -22 .
[5] 王丽苹, 高瑞贞, 张京军, 王二成. 基于卷积神经网络的混凝土路面裂缝检测[J]. 计算机科学, 2019, 46(11A): 584 -589 .
[6] 张昕, 王慧慧, 严沛, 郭阳. 一种面向多维复杂网络的节点传播重要性算法[J]. 计算机科学, 2019, 46(11A): 348 -353 .
[7] 可雨憬, 敬茂华, 郑涵尹. 区块链技术在信托行业的应用研究[J]. 计算机科学, 2020, 47(6A): 591 -595 .
[8] 杨立, 马佳佳, 江华禧, 马肖肖, 梁赓, 左春. 面向机器学习系统的需求建模与决策选择[J]. 计算机科学, 2020, 47(12): 42 -49 .
[9] 程云飞, 田红心, 刘祖军. NOMA系统异构网络中联合用户关联和功率控制协同优化[J]. 计算机科学, 2021, 48(3): 269 -274 .
[10] 熊旭东, 杜圣东, 夏琬钧, 李天瑞. 基于二分图卷积表示的推荐算法[J]. 计算机科学, 2021, 48(4): 78 -84 .