计算机科学 ›› 2021, Vol. 48 ›› Issue (12): 286-296.doi: 10.11896/jsjkx.210100209

• 人工智能 • 上一篇    下一篇

基于深度学习的交互式问答研究综述

黄欣1, 雷刚1, 曹远龙1, 陆明名2   

  1. 1 江西师范大学软件学院 南昌330022
    2 同济大学电子与信息工程学院 上海200092
  • 收稿日期:2021-01-27 修回日期:2021-04-24 出版日期:2021-12-15 发布日期:2021-11-26
  • 通讯作者: 雷刚(leigang@jxnu.edu.cn)
  • 作者简介:xinhuang@jxnu.edu.cn
  • 基金资助:
    江西省教育厅科技研究项目(GJJ200318);国家自然科学基金(61962026)

Review on Interactive Question Answering Techniques Based on Deep Learning

HUANG Xin1, LEI Gang1, CAO Yuan-long1, LU Ming-ming2   

  1. 1 School of Software,Jiangxi Normal University,Nanchang 330022,China
    2 School of Electronics and Information Engineering,Tongji University,Shanghai 200092,China
  • Received:2021-01-27 Revised:2021-04-24 Online:2021-12-15 Published:2021-11-26
  • About author:HUANG Xin,born in 1984,lecturer,is a member of China Computer Federation.His main research interests include machine learning,natural language processing and biological information.
    LEI Gang,born in 1974,associate professor,master tutor.His main research interests include natural language processing,knowledge discovery and machine learning.
  • Supported by:
    Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ200318)and National Natural Science Foundation of China(61962026).

摘要: 相比传统的一问一答,交互式问答增加了对话上下文和背景等信息,这为理解用户输入和推理答案带来了新的挑战。首先,用户输入不再局限于问题,还可以是告知问题细节、反馈答案可行与否等带有意图的语句,因此需要理解对话中每个语句的意图。其次,交互式问答允许多个角色同时参与一个问题的讨论,为每个角色生成个性化的答案,因此需要理解对话中存在的角色。再次,当交互式问答围绕一段背景文本展开时,需要理解这段背景文本,并从中抽取出问题的答案。文章对交互式问答的发展及前沿动态进行了调研,分别对无背景交互式问答、有背景交互式问答以及迁移学习在交互式问答的应用3个子方向的新方法和新发现进行了介绍,并对交互式问答的研究前景进行了分析和展望。

关键词: 问答系统, 交互式问答, 背景信息, 预训练模型

Abstract: Compared to the traditional question answering(QA),interactive question answering(IQA) considers dialogue context and background information,which brings new challenges to understand user input and reason answers.First of all,user input is not only limited to questions,but can also be utterances that inform the details of the question and give feedback on whether the answer is feasible or not.Therefore,it is necessary to understand the intent of each utterance in the dialogue.Secondly,IQA allows multiple characters to discuss a question at the same time,generating personalized answers.So,it is necessary to understand different characters and identify them from each other.Thirdly,when IQA revolves around a background document,it is necessary to understand this document and extract answers from it.This paper reviews recent development in three subareas:IQA without background,IQA with background,and the application of transfer learning in IQA,and finally discusses the future perspective of interactive question answering.

Key words: Dialogue system, Interactive question answering, Background, Pre-trained models

中图分类号: 

  • TP391
[1]SARIKAYA R.The technology behind personal digital assis- tants:An overview of the system architecture and key components[J].IEEE Signal Processing Magazine,2017,34(1):67-81.
[2]REDDY S,CHEN D,MANNING C D.CoQA:A Conversational Question Answering Challenge[J].Transactions of the Association for Computational Linguistics,2019,7:249-266.
[3]LI X,CHEN Y N,LI L,et al.End-to-End Task-Completion Neural Dialogue Systems[C]//Proceedings of the Eighth International Joint Conference on Natural Language Processing.2017:733-743.
[4]WEI Z,LIU Q,PENG B,et al.Task-oriented dialogue system for automatic diagnosis[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.2018:201-207.
[5]SERBAN I V,SORDONI A,BENGIO Y,et al.Building end-to-end dialogue systems using generative hierarchical neural network models[C]//Thirtieth AAAI Conference on Artificial Intelligence.2016.
[6]YAN R,SONG Y,WU H.Learning to respond with deep neural networks for retrieval-based human-computer conversation system[C]//Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval.2016:55-64.
[7]WANG B X.Research on semantic mining for online community Q&A pairs [D].Harbin:Harbin Institute of Technology,2017.
[8]ZHOU X Q.Research on interactive question answering tech- nology based on deep learning [D].Harbin:Harbin Institute of Technology,2017.
[9]MITCHELL T M,BETTERIDGE J,CARLSON A,et al.Populating the semantic web by macro-reading internet text[C]//International Semantic Web Conference.2009:998-1002.
[10]LOWE R,POW N,SERBAN I V,et al.The Ubuntu Dialogue Corpus:A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems[C]//Proceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue.2015:285-294.
[11]QU C,YANG L,CROFT W B,et al.Analyzing and characterizing user intent in information seeking conversations[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.2018:989-992.
[12]ALIANNEJADI M,ZAMANI H,CRESTANI F,et al.Asking clarifying questions in open-domain information-seeking conversations[C]//Proceedings of the 42nd International ACMSIGIR Conference on Research and Development in Information Retrieval.2019:475-484.
[13]WANG S,JIANG J.A compare-aggregate model for matching text sequences[C]//5th International Conference on Learning Representations(ICLR).2019.
[14]SUTSKEVER I,VINYALS O,LE Q V.Sequence to sequence learning with neural networks[C]//Advances in Neural Information Processing Systems.2014:3104-3112.
[15]WANG S,JIANG J.Learning Natural Language Inference with LSTM[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2016:1442-1451.
[16]SCHUSTER M,PALIWAL K K.Bidirectional recurrent neural networks[J].IEEE Transactions on Signal Processing,1997,45(11):2673-2681.
[17]LECUN Y,BOSER B,DENKER J S,et al.Backpropagation applied to handwritten zip code recognition[J].Neural Computation,1989,1(4):541-551.
[18]ZHOU X,DONG D,WU H,et al.Multi-view response selection for human-computer conversation[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Proces-sing.2016:372-381.
[19]WU Y,WU W,XING C,et al.Sequential Matching Network:A New Architecture for Multiturn Response Selection in Retrieval-Based Chatbots[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.2017:496-505.
[20]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems.2017:5998-6008.
[21]BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[C]//3rd International Conference on Learning Representations(ICLR).2015.
[22]ZHOU X,LI L,DONG D,et al.Multi-turn response selection for chatbots with deep attention matching network[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.2018:1118-1127.
[23]ZHANG Z,LI J,ZHU P,et al.Modeling Multi-turn Conversation with Deep Utterance Aggregation[C]//Proceedings of the 27th International Conference on Computational Linguistics.2018:3740-3752.
[24]ZONG C Q.Statistical natural language processing(Second Edition) [M].Beijing:Tsinghua University Press,2013:83-85.
[25]TAO C,WU W,XU C,et al.Multi-representation fusion net- work for multi-turn response selection in retrieval-based chatbots[C]//Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining.2019:267-275.
[26]MAO G,SU J,YU S,et al.Multi-Turn Response Selection for Chatbots With Hierarchical Aggregation Network of Multi-Representation[J].IEEE Access,2019,7:111736-111745.
[27]TAO C,WU W,XU C,et al.One time of interaction may not be enough:Go deep with an interaction-over-interaction network for response selection in dialogues[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:1-11.
[28]LOWE R T,POW N,SERBAN I V,et al.Training end-to-end dialogue systems with the ubuntu dialogue corpus[J].Dialogue &Discourse,2017,8(1):31-65.
[29]GUNASEKARA C,KUMMERFELD J K,POLYMENAKOS L,et al.Dstc7 task 1:Noetic end-to-end response selection[C]//Proceedings of the First Workshop on NLP for Conversational AI.2019:60-67.
[30]CHEN Q,WANG W.Sequential attention-based network for noetic end-to-end response selection[J].arXiv:1901.02609,2019.
[31]GU J C,LING Z H,RUAN Y P,et al.Building sequential infe- rence models for end-to-end response selection[J].arXiv:1812.00686,2018.
[32]SUN S,TAM Y C,CAO J,et al.End-to-end Gated Self-attentive Memory Network for Dialog Response Selection[C]//Workshop on DSTC7.2019.
[33]SUKHBAATAR S,WESTON J,FERGUS R,et al.End-to-end memory networks[C]//Advances in Neural Information Processing Systems.2015:2440-2448.
[34]CHIANG T R,HUANG C W,SU S Y,et al.Learning Multi-Level Information for Dialogue Response Selection by Highway Recurrent Transformer[J].arXiv:1903.08953,2019.
[35]LU J,XIE Z,LING G,et al.Spatio-Temporal Matching Net- work for Multi-Turn Responses Selection in Retrieval-Based Chatbots[C]//Workshop on DSTC7.2019.
[36]WHANG T,LEE D,LEE C,et al.Enhanced Sequential Representation Augmented with Utterance-level Attention for Response Selection[C]//Workshop on DSTC7.2019.
[37]SERBAN I V,SORDONI A,LOWE R,et al.A hierarchical latent variable encoder-decoder model for generating dialogues[C]//Thirty-First AAAI Conference on Artificial Intelligence.2017.
[38]XING C,WU W,WU Y,et al.Topic aware neural response ge- neration[C]//Thirty-First AAAI Conference on Artificial Intelligence.2017.
[39]WU Y,WU W,YANG D,et al.Neural response generation with dynamic vocabularies[C]//Thirty-Second AAAI Conference on Artificial Intelligence.2018.
[40]LI J,GALLEY M,BROCKETT C,et al.A Diversity-Promoting Objective Function for Neural Conversation Models[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2016:110-119.
[41]TIAN Z,YAN R,MOU L,et al.How to make context more useful? an empirical study on context-aware neural conversational models[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.2017:231-236.
[42]ZHANG W,CUI Y,WANG Y,et al.Context-sensitive generation of open-domain conversational responses[C]//Proceedings of the 27th International Conference on Computational Linguistics.2018:2437-2447.
[43]SANKAR C,SUBRAMANIAN S,PAL C,et al.Do Neural Dialog Systems Use the Conversation History Effectively? An Empirical Study[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:32-37.
[44]LI J,MONROE W,RITTER A,et al.Deep Reinforcement Learning for Dialogue Generation[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Proces-sing.2016:1192-1202.
[45]LI J,MONROE W,SHI T,et al.Adversarial Learning for Neural Dialogue Generation[C]//Proceedings of the 2017 Confe-rence on Empirical Methods in Natural Language Processing.2017:2157-2169.
[46]XU Z,LIU B,WANG B,et al.Neural response generation via gan with an approximate embedding layer[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.2017:617-626.
[47]SONG Y,LI C T,NIE J Y,et al.An ensemble of retrieval-based and generation-based human computer conversation systems[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence.2018:4382-4388.
[48]YAN R,ZHAO D.Coupled context modeling for deep chit-chat:towards conversations between human and computer[C]//Proceedings of the 24th ACMSIGKDD International Conference on Knowledge Discovery & Data Mining.2018:2574-2583.
[49]WU Y,WEI F,HUANG S,et al.Response generation by context-aware prototype editing[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019,33:7281-7288.
[50]LI H,MIN M R,GE Y,et al.A context-aware attention network for interactive question answering[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2017:927-935.
[51]GAO Y,LI P,KING I,et al.Interconnected Question Generation with Coreference Alignment and Conversation Flow Mode-ling[C]//Proceedings of the 57th Annual Meeting of the Asso-ciation for Computational Linguistics.2019:4853-4862.
[52]CAO Y T,RAO S,DAUM III H.Controlling the Specificity of Clarification Question Generation[C]//Proceedings of the 2019 Workshop on Widening NLP.2019:53-56.
[53]RAO S,DAUM III H.Learning to Ask Good Questions:Ran- king Clarification Questions using Neural Expected Value of Perfect Information[C]//Proceedings of the 56th Annual Mee-ting of the Association for Computational Linguistics.2018:2737-2746.
[54]QU C,YANG L,CROFT W B,et al.User intent prediction in information-seeking conversations[C]//Proceedings of the 2019 Conference on Human Information Interaction and Retrieval.2019:25-33.
[55]YU Y,PENG S,YANG G H.Modeling Long-Range Context for Concurrent Dialogue Acts Recognition[C]//Proceedings of the 28th ACM International Conference on Information and Know-ledge Management.2019:2277-2280.
[56]JUDY D,RON Z.Pragmatic determinants of intonation contours for dialogue systems[J].International Journal of Speech Technology,1997,1(2):109-120.
[57]STOLCKE A,RIES K,COCCARO N,et al.Dialogue act mode- ling for automatic tagging and recognition of conversational speech[J].Computational linguistics,2000,26(3):339-373.
[58]PARK S,KIM D,OH A.Conversation Model Fine-Tuning for Classifying Client Utterances in Counseling Dialogues[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2019:1448-1459.
[59]SONG W.Research on topic based query intention recognition [D].Harbin:Harbin Institute of Technology,2013.
[60]LU W,ZHOU H X,ZHANG X J.Review of Research on Query Intent[J].Journal of Library Science in China,2013,39(1):100-111.
[61]CHEN H C.Mining consumption intention based on microblog [D].Harbin:Harbin Institute of Technology,2014.
[62]JIA Y L,HAN D L,LIN H Y,et al.Consumption Intention Recognition Algorithm for Weibo Users[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2020,56(1):68-74.
[63]ANG J,LIU Y,SHRIBERG E.Automatic dialog act segmentation and classification in multiparty meetings[C]//Proceedings.(ICASSP’05).IEEE International Conference on Acoustics,Speech,and Signal Processing.2005.
[64]SURENDRAN D,LEVOW G A.Dialog act tagging with support vector machines and hidden Markov models[C]//Ninth International Conference on Spoken Language Processing.2006.
[65]JI G,BILMES J.Dialog act tagging using graphical models[C]//Proceedings.(ICASSP’05).IEEE International Conference on Acoustics,Speech,and Signal Processing.2005.
[66]KIM S N,CAVEDON L,BALDWIN T.Classifying dialogue acts in one-on-one live chats[C]//Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing.2010:862-871.
[67]FERNANDEZ R,PICARD R W.Dialog Act Classification from Prosodic Features Using Support Vector Machines[C]//Speech Prosody 2002,International Conference.2002.
[68]VENKATARAMAN A,FERRER L,STOLCKE A,et al. Training a prosody-based dialog act tagger from unlabeled data[C]//2003 IEEE International Conference on Acoustics,Speech,and Signal Processing.2003.
[69]DIELMANN A,RENALS S.Recognition of dialogue acts in multiparty meetings using a switching DBN[J].IEEE Transactions on Audio,Speech,and Language Processing,2008,16(7):1303-1314.
[70]QUARTERONI S,IVANOV A V,RICCARDI G.Simultaneous dialog act segmentation and classification from human-human spoken conversations[C]//2011 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).2011:5596-5599.
[71]CHEN L,DI EUGENIO B.Multimodality and dialogue act classification in the RoboHelper project[C]//Proceedings of the SIGDIAL 2013 Conference.2013:183-192.
[72]RIBEIRO E,RIBEIRO R,DE MATOS D M.The influence of context on dialogue act recognition[J].arXiv:1506.00839,2015.
[73]BARAHONA L M R,GASIC M,MRKI N,et al.Exploiting Sentence and Context Representations in Deep Neural Models for Spoken Language Understanding[C]//Proceedings of COLING 2016,the 26th International Conference on Computational Linguistics:Technical Papers.2016:258-267.
[74]KHANPOUR H,GUNTAKANDLA N,NIELSEN R.Dialogue act classification in domain-independent conversations using a deep recurrent neural network[C]//Proceedings of COLING 2016,the 26th International Conference on Computational Linguistics:Technical Papers.2016:2012-2021.
[75]LIU Y,HAN K,TAN Z,et al.Using context information for dialog act classification in dnn framework[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.2017:2170-2178.
[76]HERMANN K M,KOCISKY T,GREFENSTETTE E,et al. Teaching machines to read and comprehend[C]//Advances in Neural Information Processing Systems.2015:1693-1701.
[77]ONISHI T,WANG H,BANSAL M,et al.Who did What:A Large-Scale Person-Centered Cloze Dataset[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.2016:2230-2235.
[78]HILL F,BORDES A,CHOPRA S,et al.The goldilocks principle:Reading children’s books with explicit memory representations[C]//Proceedings of the Forth International Conference on Learning Representations.2016.
[79]BAJGAR O,KADLEC R,KLEINDIENST J.Embracing data abundance:Booktest dataset for reading comprehension[J].ar-Xiv:1610.00956,2016.
[80]DHINGRA B,LIU H,YANG Z,et al.Gated-Attention Readers for Text Comprehension[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.2017:1832-1846.
[81]MA K,JURCZYK T,CHOI J D.Challenging Reading Comprehension on Daily Conversation:Passage Completion on Multiparty Dialog[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2018:2039-2048.
[82]YANG Z,CHOI J D.FriendsQA:Open-domain question answering on TV show transcripts[C]//Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue.2019:188-197.
[83]LI J,LIU M,KAN M Y,et al.Molweni:A Challenge Multiparty Dialogues-based Machine Reading Comprehension Dataset with Discourse Structure[J].arXiv:2004.05080,2020.
[84]CHEN D,BOLTON J,MANNING C D.A Thorough Examination of the CNN/Daily Mail Reading Comprehension Task[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.2016:2358-2367.
[85]HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780.
[86]TRISCHLER A,YE Z,YUAN X,et al.Natural Language Comprehension with the EpiReader[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Proces-sing.2016:128-137.
[87]CUI Y,CHEN Z,WEI S,et al.Attention-over-Attention Neural Networks for Reading Comprehension[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.2017:593-602.
[88]SAEIDI M,BARTOLO M,LEWIS P,et al.Interpretation of Natural Language Rules in Conversational Machine Reading[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:2087-2097.
[89]ELGOHARY A,ZHAO C,BOYD-GRABER J.A dataset and baselines for sequential open-domain question answering[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:1077-1083.
[90]SUN K,YU D,CHEN J,et al.DREAM:A Challenge Data Set and Models for Dialogue-Based Reading Comprehension[J].Transactions of the Association for Computational Linguistics,2019,7:217-231.
[91]XU H,LIU B,SHU L,et al.Review conversational reading comprehension[J].arXiv:1902.00821,2019.
[92]DAS A,KOTTUR S,GUPTA K,et al.Visual dialog[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:326-335.
[93]IYYER M,YIH W T,CHANG M W.Search-based neural structured learning for sequential question answering[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.2017:1821-1831.
[94]SAHA A,PAHUJA V,KHAPRA M M,et al.Complex sequential question answering:Towards learning to converse over linked question answer pairs with a knowledge graph[C]//Thirty-Second AAAI Conference on Artificial Intelligence.2018.
[95]GUO D,TANG D,DUAN N,et al.Dialog-to-action:Conversational question answering over a large-scale know-ledge base[C]//Advances in Neural Information Processing Systems.2018:2942-2951.
[96]CHRISTMANN P,SAHA ROY R,ABUJABAL A,et al.Look before you hop:Conversational question answering over know-ledge graphs using judicious context expansion[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.2019:729-738.
[97]LI Z J,WANG C B.Survey on Deep-learning-based Machine Reading Comprehension[J].Computer Science,2019,46(7):7-12.
[98]RAJPURKAR P,ZHANG J,LOPYREV K,et al.SQuAD: 100000+ Questions for Machine Comprehension of Text[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.2016:2383-2392.
[99]RAJPURKAR P,JIA R,LIANG P.Know What You Don’t Know:Unanswerable Questions for SQuAD[C]//Proceedings of the 56th Annual Meeting of the Association for Computatio-nal Linguistics.2018:784-789.
[100]NGUYEN T,ROSENBERG M,SONG X,et al.MS MARCO:A human generated machine reading comprehension dataset[C]//CoCo 2016-Proceedings of the Workshop on Cognitive Computation:Integrating Neural and Symbolic Approaches 2016,co-located with the 30th Annual Conference on Neural Information Processing Systems,NIPS 2016.2016.
[101]CHOI E,HE H,IYYER M,et al.QuAC:Question Answering in Context[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:2174-2184.
[102]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2019.
[103]QIU X,SUN T,XU Y,et al.Pre-trained Models for Natural Language Processing:A Survey[J].arXiv:2003.08271,2020.
[104]MA L,ZHANG W N,LI M,et al.A Survey of Document Grounded Dialogue Systems(DGDS)[J].arXiv:2004.13818,2020.
[105]CHEN D,FISCH A,WESTON J,et al.Reading Wikipedia to Answer Open-Domain Questions[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.2017:1870-1879.
[106]GU J,LU Z,LI H,et al.Incorporating Copying Mechanism in Sequence-to-Sequence Learning[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.2016:1631-1640.
[107]SEE A,LIU P J,MANNING C D.Get To The Point:Summarization with Pointer-Generator Networks[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.2017:1073-1083.
[108]ZHU C,ZENG M,HUANG X.SDNet:Contextualized Attention-based Deep Network for Conversational Question Answe-ring[J].arXiv:1812.03593,2018.
[109]SU L,GUO J,FAN Y,et al.An Adaptive Framework for Conversational Question Answering[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:10041-10042.
[110]MIN S,ZHONG V,SOCHER R,et al.Efficient and Robust Question Answering from Minimal Context over Documents[C]//Proceedings of the 56th Annual Meeting of the Asso-ciation for Computational Linguistics.2018:1725-1735.
[111]GU Y,GUI X,LI D.TT-Net:Topic Transfer-Based Neural Network for Conversational Reading Comprehension[J].IEEE Access,2019,7:116696-116705.
[112]BAI S,KOLTER J Z,KOLTUN V.An empirical evaluation of generic convolutional and recurrent networks for sequence mo-deling[J].arXiv:1803.01271,2018.
[113]MANDYA A,BOLLEGALA D,COENEN F.Evaluating Co-re- ference Chains based Conversation History in Conversational Question Answering[C]//International Conference of the Paci-fic Association for Computational Linguistics.Springer,Singapore.2019:280-292.
[114]SEO M,KEMBHAVI A,FARHADI A,et al.Bidirectional attention flow for machine comprehension[C]//5th International Conference on Learning Representations(ICLR).2017.
[115]CLARK C,GARDNER M.Simple and Effective Multi-Para- graph Reading Comprehension[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.2018:845-855.
[116]PETERS M,NEUMANN M,IYYER M,et al.Deep Contextua- lized Word Representations[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2018:2227-2237.
[117]YATSKAR M.A Qualitative Comparison of CoQA,SQuAD2.0 and QuAC[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2019:2318-2323.
[118]HUANG H Y,CHOI E,YIH W.FlowQA:Grasping Flow in History for Conversational Machine Comprehension[C]//7th International Conference on Learning Representations(ICLR).2019.
[119]CHEN Y,WU L,ZAKI M J.Graphflow:Exploiting conversation flow with graph neural networks for conversational machine comprehension[J].arXiv:1908.00059,2019.
[120]OHSUGI Y,SAITO I,NISHIDA K,et al.A Simple but Effective Method to Incorporate Multi-turn Context with BERT for Conversational Machine Comprehension[C]//Proceedings of the First Workshop on NLP for Conversational AI.2019:11-17.
[121]YEH Y T,CHEN Y N.FlowDelta:Modeling Flow Information Gain in Reasoning for Conversational Machine Comprehension[C]//Proceedings of the 2nd Workshop on Machine Reading for Question Answering.2019:86-90.
[122]QU C,YANG L,QIU M,et al.BERT with History Answer Embedding for Conversational Question Answering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:1133-1136.
[123]QU C,YANG L,QIU M,et al.Attentive History Selection for Conversational Question Answering[C]//Proceedings of the 28th ACM International Conference on Information and Know-ledge Management.2019:1391-1400.
[124]JU Y,ZHAO F,CHEN S,et al.Technical report on Conversational Question Answering[J].arXiv:1909.10772,2019.
[125]LIU Y,OTT M,GOYAL N,et al.RoBERTa:A Robustly Optimized BERT Pretraining Approach[J].arXiv:1907.11692,2019.
[126]GOODFELLOW I J,SHLENS J,SZEGEDY C.Explaining and harnessing adversarial examples[J].arXiv:1412.6572,2014.
[127]HINTON G,VINYALS O,DEAN J.Distilling the knowledge in a neural network[J].arXiv:1503.02531,2015.
[128]RUDER S.Neural Transfer Learning for Natural Language Processing[D].Galway,Ireland:National University of Ireland,2019.
[129]QIU M,YANG L,JI F,et al.Transfer Learning for Context- Aware Question Matching in Information-seeking Conversations in E-commerce[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.2018:208-213.
[130]WHANG T,LEE D,LEE C,et al.Domain adaptive training bert for response selection[J].arXiv:1908.04812,2019.
[131]YAN R,ZHAO D,E W.Joint learning of response ranking and next utterance suggestion in human-computer conversation system[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.2017:685-694.
[132]TAO C,WU W,XU C,et al.Improving matching models with contextualized word representations for multiturn response selection in retrieval-based chatbots[J].arXiv:1808.07244,2018.
[133]CHO K,VAN MERRIËNBOER B,GULCEHRE C,et al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP).2014:1724-1734.
[134]WOLF T,SANH V,CHAUMOND J,et al.TransferTransfo:A transfer learning approach for neural network based conversational agents[J].arXiv:1901.08149,2019.
[1] 王胜, 张仰森, 陈若愚, 向尕. 基于细粒度差异特征的文本匹配方法[J]. 计算机科学, 2021, 48(8): 60-65.
[2] 汤世征, 张岩峰. DragDL:一种易用的深度学习模型可视化构建系统[J]. 计算机科学, 2021, 48(8): 220-225.
[3] 张玉帅, 赵欢, 李博. 基于BERT和BiLSTM的语义槽填充[J]. 计算机科学, 2021, 48(1): 247-252.
[4] 倪海清, 刘丹, 史梦雨. 基于语义感知的中文短文本摘要生成模型[J]. 计算机科学, 2020, 47(6): 74-78.
[5] 陈晓军, 向阳. 企业风险知识图谱的构建及应用[J]. 计算机科学, 2020, 47(11): 237-243.
[6] 宋砚秋, 李桂君, 李慧嘉. 基于势能背景信息的社团标签探测算法[J]. 计算机科学, 2018, 45(6A): 314-317.
[7] 韩朝, 苗夺谦, 任福继. 基于粗糙集理论的中文知识问答的知识谓词分析[J]. 计算机科学, 2018, 45(6): 183-186.
[8] 王东升,王卫民,王石,符建辉,诸峰. 面向限定领域问答系统的自然语言理解方法综述[J]. 计算机科学, 2017, 44(8): 1-8.
[9] 冶忠林,贾真,尹红风. 多领域自然语言问句理解研究[J]. 计算机科学, 2017, 44(6): 216-221.
[10] 李舟军,李水华. 基于Web的问答系统综述[J]. 计算机科学, 2017, 44(6): 1-7.
[11] 蒋 胜,王忠群,修 宇,皇苏斌,汪千松. 基于动态社会行为和用户背景的协同推荐方法[J]. 计算机科学, 2015, 42(3): 252-255.
[12] 李彦成,曾庆田,鲁法明,薛洁. 基于颜色Petri网的有偿交互QA系统投诉模型[J]. 计算机科学, 2014, 41(7): 110-113.
[13] 赵喜清,张利明,高明霞. 面向OWL知识的问答系统:Agile[J]. 计算机科学, 2013, 40(7): 222-225.
[14] 张江涛,杜永萍. 基于语义链的检索在QA系统中的应用[J]. 计算机科学, 2013, 40(2): 257-260.
[15] 段利国,陈俊杰. 综合句法结构及语义相似度的问题推荐技术[J]. 计算机科学, 2012, 39(1): 203-206.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈德江, 王君, 张浩为. 基于直觉模糊多属性决策的动态威胁评估模型[J]. 计算机科学, 2019, 46(4): 183 -188 .
[2] 蔡莉, 李英姿, 江芳, 梁宇. 面向城市热点区域的不平衡数据聚类挖掘研究[J]. 计算机科学, 2019, 46(8): 16 -22 .
[3] 潘孝勤, 芦天亮, 杜彦辉, 仝鑫. 基于深度学习的语音合成与转换技术综述[J]. 计算机科学, 2021, 48(8): 200 -208 .
[4] 王俊, 王修来, 庞威, 赵鸿飞. 面向科技前瞻预测的大数据治理研究[J]. 计算机科学, 2021, 48(9): 36 -42 .
[5] 余力, 杜启翰, 岳博妍, 向君瑶, 徐冠宇, 冷友方. 基于强化学习的推荐研究综述[J]. 计算机科学, 2021, 48(10): 1 -18 .
[6] 王梓强, 胡晓光, 李晓筱, 杜卓群. 移动机器人全局路径规划算法综述[J]. 计算机科学, 2021, 48(10): 19 -29 .
[7] 高洪皓, 郑子彬, 殷昱煜, 丁勇. 区块链技术专题序言[J]. 计算机科学, 2021, 48(11): 1 -3 .
[8] 毛瀚宇, 聂铁铮, 申德荣, 于戈, 徐石成, 何光宇. 区块链即服务平台关键技术及发展综述[J]. 计算机科学, 2021, 48(11): 4 -11 .
[9] 蒋从锋, 殷继亮, 胡海周, 闫龙川, 张纪林, 万健, 仇烨亮. 混合部署数据中心失效负载分析[J]. 计算机科学, 2021, 48(11A): 225 -231 .
[10] 张倩, 肖丽. 基于流线的流场可视化绘制方法综述[J]. 计算机科学, 2021, 48(12): 1 -7 .