计算机科学 ›› 2022, Vol. 49 ›› Issue (6A): 44-53.doi: 10.11896/jsjkx.210700196

• 智慧医疗 • 上一篇    下一篇

基于胸腔积液超声图像标准化方法的胸腔积液性质分析模型

冯亦凡, 徐琪, 曾卫明   

  1. 上海海事大学信息工程学院计算机系 上海 201306
  • 出版日期:2022-06-10 发布日期:2022-06-08
  • 通讯作者: 徐琪(qixu@shmtu.edu.cn)
  • 作者简介:(273641239@qq.com)
  • 基金资助:
    国家自然科学基金(31870979);长征医院人才建设三年行动计划——“金字塔人才工程”军事医学人才项目

Property Analysis Model of Pleural Effusion Based on Standardization of Pleural Effusion Ultrasonic Image

FENG Yi-fan, XU Qi, ZENG Wei-ming   

  1. Department of Computer Science,College of Information Engineering,Shanghai Maritime University,Shanghai 201306,China
  • Online:2022-06-10 Published:2022-06-08
  • About author:FENG Yi-fan,born in 2000.His main research interests include image processing,pattern recognition and ultrasound image analysis.
    XU Qi,born in 1982,Ph.D,lecturer.Her main research interests include image processing,pattern recognition and ultrasound image analysis.
  • Supported by:
    National Natural Science Foundation of China(31870979) and Three Year Action Plan for Talent Construction of Shanghai Changzheng Hospital——“Pyramid Talent Project” Military Medical Talent Project.

摘要: 胸腔积液是许多重大疾病的并发症,有创的穿刺并生化检验是确定积液性质的金标准,因此一种无创的胸腔积液性质分析模型具有重大意义。提出了基于胸腔积液超声图像标准化方法的胸腔积液性质分析模型(Property Analysis Model of Pleural Effusion,PAMPE),它能无创、快速地对积液颜色、浑浊程度和李凡特试验3种实验室指标进行分类。构造PAMPE主要分为图像标准化、构建特征工程和特征筛选并使用v-SVM构建PAMPE三大步骤。提出了胸腔积液超声图像标准化方法(Standardization Of Pleural Effusion Ultrasonic Image,SOPEU)作为模型构建过程中的图像标准化方法,它削弱了超声设备参数不同、患者肥胖程度不同和胸腔积液被骨骼与膈肌遮蔽程度不同造成的图像集中图像的灰度和尺度差异。PAMPE在多种评价指标——准确率、查准率、查全率、F1-score、混淆矩阵、接收者操作特性(Receiver Operating Characteristic,ROC)曲线和ROC曲线下的面积(Area Under ROC Curve,AUC)中均表现良好,具体来说,模型在3个分类问题上的准确率分别达到0.800,0.743和0.719,查准率分别达到0.806,0.779和0.741,查全率分别达到0.921,0.815和0.893,F1-score分别达到0.860,0.796和0.809,AUC分别达到0.820,0.700和0.709,这些指标从多个角度体现出PAMPE的有效性。对比实验表明,对于这3个分类问题,PAMPE相比不使用SOPEU构造的模型分别增加了0.090,0.048和0.086的准确率。实验结果表明标准化后的图像有效地减小了数据来源不同所导致的分类误差。

关键词: 超声图像标准化, 无创性质分析, 胸腔积液超声图像

Abstract: Pleural effusion is a complication of many major diseases.Invasive puncture and biochemical tests are the gold standard for diagnoising the property of pleural effusion.Therefore,a non-invasive pleural effusion analysis method is of great significance.A model based on standardization of pleural effusion ultrasonic image—Property analysis method of pleural effusion(PAMPE) is proposed.PAMPE can quickly and noninvasively classify three laboratory indexes:effusion color,effusion turbidity and Rivalta test.The construction of PAMPE is mainly divided into three steps:image standardization,construction of feature engineering and using v-SVM to build PAMPE after feature selection.In the image standardization step,a new standardization method—Standardi-zation of Pleural Effusion Ultrasonic Image(SOPEU) is also proposed.SOPEU suppresses the differences in the grayscale and scale of the images in the image set caused by the different parameters of ultrasound equipment,the different degree of obesity of patients,and the different degree to which pleural effusion is shielded by the bones and diaphragm.Experiment results illustrate that,PAMPE behaves well in a variety of evaluation indicators:accuracy,precision,recall,F1-score,confusion matrix,receiver operating characteristic(ROC) curve and area under ROC curve(AUC).Specifically,for the three classification problems,the accuracy can reach 0.800,0.743 and 0.719,the precision can reach 0.806,0.779 and 0.741,the recall can reach 0.921,0.815 and 0.893,the F1-score can reach 0.860,0.796 and 0.809 and the AUC can reach 0.820,0.700 and 0.709,which proves the effectiveness of PAMPE from different aspects.Comparative results shows that for the three classification problems,PAMPE has increased the accuracy of 0.090,0.048 and 0.086 respectively compared with the model constructed without SOPEU.The experimental results show that the normalized images effectively reduce the classification errors caused by the different quality of data sources.

Key words: Non-invasive qualitative analysis, Ultrasound image of pleural effusion, Ultrasound image standardization

中图分类号: 

  • TP391
[1] ZHOW Y R,XU H Y,LUO L C.Effect of respiratory function exercise on lung function and quality of life in patients with pleural effusion after puncture and drainage[J].Guizhou Medical Journal,2018,42(10):1237-1239,1281.
[2] LUO J,ZHONG Q W,ZHANG X H,et al.Value of spectral CT to the qualitative disgnosis of pleural effusion[J].Journal of Chinese Practical Diagnosis and Therapy,2015,29(5):496-498.
[3] DAI B,CAI X X.Clinical significance of indicators detection in pleural effusions[J].Chinese Journal of Practical Pediatrics,2015,29(5):496-498.
[4] ZHANG Y B,ZHOU Z P,SHEN D M,et al.Diagnostic efficacy of the ratio of carcinoembryonic antigen in pleural effusion and serum for the nature of pleural effusion[J].Chinese Journal of Clinical Oncology and Rehabilitation,2021,28(2):210-213.
[5] XIA J,YAN X B,LIU R Y.Diagnostic value of combinative detection of serum carcinoembryonic antigen(CEA),adenosine deaminase(ADA),lactate dehydrogenase(LDH) and ESR in differential diagnosis of pleural effusion[J].Anhui Medical and Pharmaceutical Journal,2013,17(2):222-224.
[6] ZHAN Z Y.Analysis of 46 cases of pleural effusion treated by modified thoracentesis[J].China Practical Medicine,2015,29(5):496-498.
[7] TU J.B-ultrasound diagnosis of pleural effusion[J].Journal of Clinical Ultrasound in Medicine,2002(2):101-102.
[8] CHEN S W,LIU Y J,LIU D,et al.AlexNet Model and Adaptive Contrast Enhancement Based Ultrasound Imaging Classification[J].Computer Science,2019,46(S1):146-152.
[9] ZOU Y X,ZHOU L L,ZHAO Z T,et al.Study on the classification of benign and malignant thyroid nodule in ultrasound image on the basis of CNNs[J].China Medical Equipment,2020,17(3):9-13.
[10] DONG Z Y,QU W C,HU Z W,et al.The diagnostic value ofultrasonic spot diffusion density relevant technique for the nature of pleural effusion[J].Guangdong Medical Journal,2015,36(22):3509-3511.
[11] LIU G Y,HUANG Y,CAO Y,et al.Research on extraction of Image texture Feature based on Gray co-occurrence matrix[J].Technology Wind,2021,(12):61-64.
[12] XIONG B S,ZHANG X F,OU Q F.Fault Diagnosis Method of Rolling Bearing Based on Equivalent LBP Texture Map[J].Journal of Nanchang Hangkong University(Natural Sciences),2020,34(4):1-6.
[13] DENG K,LI Z Z,HOU Y,et al.The Preprocessing Method of Metabolomic Mass Spectrum Data Based on the Two-dimensionalMaximal Overlap Discrete Wavelet Transform[J].Chinese Journal of Health Statistics,2017,34(6):850-852,856.
[14] HUANG X,YUAN M.Improved SVM model for predictingcasualties in earthquake disasters and its application[J].Journal of Industrial Engineering and Engineering Management,2018,32(1):93-99.
[15] ZHAO J,LI Z M,LU L Q,et al.Weed Identification in Maize Field Based on Multi-Spectral Remote Sensing of Unmanned Aerial Vehicle[J].Scientia Agricultura Sinica,2020,53(8):1545-1555.
[16] FENG N,SONG Y Q,LIU Z.Automatic classification of liver tumors by combining feature reuse and attention mechanism[J].Journal of Image and Graphics,2020,25(8):1695-1707.
[1] 陈志强, 韩萌, 李慕航, 武红鑫, 张喜龙.
数据流概念漂移处理方法研究综述
Survey of Concept Drift Handling Methods in Data Streams
计算机科学, 2022, 49(9): 14-32. https://doi.org/10.11896/jsjkx.210700112
[2] 王明, 武文芳, 王大玲, 冯时, 张一飞.
生成链接树:一种高数据真实性的反事实解释生成方法
Generative Link Tree:A Counterfactual Explanation Generation Approach with High Data Fidelity
计算机科学, 2022, 49(9): 33-40. https://doi.org/10.11896/jsjkx.220300158
[3] 张佳, 董守斌.
基于评论方面级用户偏好迁移的跨领域推荐算法
Cross-domain Recommendation Based on Review Aspect-level User Preference Transfer
计算机科学, 2022, 49(9): 41-47. https://doi.org/10.11896/jsjkx.220200131
[4] 周芳泉, 成卫青.
基于全局增强图神经网络的序列推荐
Sequence Recommendation Based on Global Enhanced Graph Neural Network
计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085
[5] 宋杰, 梁美玉, 薛哲, 杜军平, 寇菲菲.
基于无监督集群级的科技论文异质图节点表示学习方法
Scientific Paper Heterogeneous Graph Node Representation Learning Method Based onUnsupervised Clustering Level
计算机科学, 2022, 49(9): 64-69. https://doi.org/10.11896/jsjkx.220500196
[6] 柴慧敏, 张勇, 方敏.
基于特征相似度聚类的空中目标分群方法
Aerial Target Grouping Method Based on Feature Similarity Clustering
计算机科学, 2022, 49(9): 70-75. https://doi.org/10.11896/jsjkx.210800203
[7] 郑文萍, 刘美麟, 杨贵.
一种基于节点稳定性和邻域相似性的社区发现算法
Community Detection Algorithm Based on Node Stability and Neighbor Similarity
计算机科学, 2022, 49(9): 83-91. https://doi.org/10.11896/jsjkx.220400146
[8] 吕晓锋, 赵书良, 高恒达, 武永亮, 张宝奇.
基于异质信息网的短文本特征扩充方法
Short Texts Feautre Enrichment Method Based on Heterogeneous Information Network
计算机科学, 2022, 49(9): 92-100. https://doi.org/10.11896/jsjkx.210700241
[9] 徐天慧, 郭强, 张彩明.
基于全变分比分隔距离的时序数据异常检测
Time Series Data Anomaly Detection Based on Total Variation Ratio Separation Distance
计算机科学, 2022, 49(9): 101-110. https://doi.org/10.11896/jsjkx.210600174
[10] 聂秀山, 潘嘉男, 谭智方, 刘新放, 郭杰, 尹义龙.
基于自然语言的视频片段定位综述
Overview of Natural Language Video Localization
计算机科学, 2022, 49(9): 111-122. https://doi.org/10.11896/jsjkx.220500130
[11] 曹晓雯, 梁美玉, 鲁康康.
基于细粒度语义推理的跨媒体双路对抗哈希学习模型
Fine-grained Semantic Reasoning Based Cross-media Dual-way Adversarial Hashing Learning Model
计算机科学, 2022, 49(9): 123-131. https://doi.org/10.11896/jsjkx.220600011
[12] 周旭, 钱胜胜, 李章明, 方全, 徐常胜.
基于对偶变分多模态注意力网络的不完备社会事件分类方法
Dual Variational Multi-modal Attention Network for Incomplete Social Event Classification
计算机科学, 2022, 49(9): 132-138. https://doi.org/10.11896/jsjkx.220600022
[13] 戴禹, 许林峰.
基于文本行匹配的跨图文本阅读方法
Cross-image Text Reading Method Based on Text Line Matching
计算机科学, 2022, 49(9): 139-145. https://doi.org/10.11896/jsjkx.220600032
[14] 曲倩文, 车啸平, 曲晨鑫, 李瑾如.
基于信息感知的虚拟现实用户临场感研究
Study on Information Perception Based User Presence in Virtual Reality
计算机科学, 2022, 49(9): 146-154. https://doi.org/10.11896/jsjkx.220500200
[15] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!