计算机科学 ›› 2023, Vol. 50 ›› Issue (1): 270-275.doi: 10.11896/jsjkx.211100091

• 人工智能 • 上一篇    下一篇

全局异步局部同步的带阈值的脉冲神经膜系统

张露萍, 徐飞   

  1. 华中科技大学人工智能与自动化学院图像处理与智能控制教育部重点实验室 武汉 430074
  • 收稿日期:2021-11-08 修回日期:2022-06-14 出版日期:2023-01-15 发布日期:2023-01-09
  • 通讯作者: 徐飞(fxu@hust.edu.cn)
  • 作者简介:lpzhang@hust.edu.cn
  • 基金资助:
    国家自然科学基金(62072201);国家重点研发计划-政府间国际科技创新合作项目(2021YFE0102100);湖北省重点研发计划项目(2021BAA168);中央高校基础科研专项基金(2019kfyXMBZ056)

SNPT Systems Working in Global Asynchronous and Local Synchronous Mode

ZHANG Luping, XU Fei   

  1. Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China,School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074,China
  • Received:2021-11-08 Revised:2022-06-14 Online:2023-01-15 Published:2023-01-09
  • About author:ZHANG Luping,born in 1982,master,associated professor.Her main research interests include natural computing and membrane computing.
    XU Fei,born in 1984,Ph.D,associate researcher.His main research interests include natural computing,bio-inspired computing,DNA computing,and their applications in biomedicine.
  • Supported by:
    National Natural Science Foundation of China(62072201),National Key R & D Program of China for InternationalS & T Cooperation Projects(2021YFE0102100),Provincial Key R & D Program of Hubei Province(2021BAA168) and Fundamental Research Funds for the Central Universities(2019kfyXMBZ056).

摘要: 带阈值的脉冲神经膜系统是一类生物启发式计算模型,提出该系统的灵感来自神经元电位变化与其活动的联系。对于带阈值的脉冲神经膜系统的计算能力研究,人们已证明该系统在极大同步工作模式下,作为产生数或接受数的计算设备时,是与图灵机等价(计算通用)的,而该系统在其他工作模式下的计算能力如何也是人们普遍关心的问题。文中研究的是带阈值脉冲神经膜系统在全局异步局部同步模式下产生数的能力,证明了突触带整数权重的相应系统是计算通用的, 而突触带正整数权重的相应系统只能产生半线性数集。研究结果表明,突触权重的取值范围影响着全局异步局部同步工作模式下带阈值脉冲神经膜系统的计算能力。

关键词: 生物启发计算, 脉冲神经膜系统, 全局异步, 局部同步, 计算能力

Abstract: Spiking neural P systems with thresholds(SNPT systems) are a class of bio-inspired computing models,inspired by the association between the potential changes in neurons and the neural activities.It is proved that SNPT systems working in the maximally parallel mode are computationally universal since they can achieve the equivalent computation power with Turing machines as number generators and acceptors.The computing power of SNPT systems working in other modes is a topic of concern.In this work,we investigate the number generating power of SNPT systems working in the global asynchronous and local synchronous way(ASNPlocsynT systems).It is proved that ASNPlocsynT systems with integer weights are universal,and ASNPlocsynT systems with positive-integer weights can only generate the semilinear sets of numbers.The results show that the range of synaptic weights affects the computation power of ASNPlocsynT systems.

Key words: Bio-inspired computing, Spiking neural P system, Global asynchronization, Local synchronization, Computation power

中图分类号: 

  • TP301
[1]FORBES N.Imitation of Life:How Biology is Inspiring Computing [M].Mit Press,2004.
[2]AKERKAR R,SAJJA P S.Bio-inspired Computing:Constitu-ents and Challenges [J].International Journal of Bio-Inspired Computation,2009,1(3):135-150.
[3]PĂUN G H.A Quick Introduction to Membrane Computing[J].The Journal of Logic and Algebraic Programming,2010,79(6):291-294.
[4]ZHANG G,GHEORGHE M,PAN L,etal.Evolutionary Mem-brane Computing:A Comprehensive Survey and New Results [J].Information Sciences,2014,279:528-551.
[5]PĂUN G H.A Dozen of Research Topics in Membrane Computing [J].Theoretical Computer Science,2018,736:76-78.
[6]ZHANG G,SHANG Z,VERLAN S,et al.An Overview ofHardware Implementation of Membrane Computing Models [J].ACM Computing Surveys(CSUR),2020,53(4):1-38.
[7]BUIU C,FLOREA A G.Membrane Computing Models and Robot Controller Design,Current Results and Challenges [J].Journal of Membrane Computing,2019,1(4):262-269.
[8]BARFEH D P Y.Basic Mathematical Operations in Membrane Computing [C]//2019 International Conference on Computational Intelligence and Knowledge Economy(ICCIKE).IEEE,2019:278-282.
[9]SONG B,LI K,ORELLANA-MARTÍN D,et al.A Survey of Nature-Inspired Computing:Membrane Computing [J].ACM Computing Surveys(CSUR),2021,54(1):1-31.
[10]IONESCU M,PĂUN G H,YOKOMORI T,Spiking Neural P Systems[J].Fundamenta Informaticae,2006,71(23):279-308.
[11]PAN L,PĂUN G H.Spiking Neural P Systems with Anti-Spikes[J].International Journal of Computers Communications &Control,2009,4(3):273-282.
[12]PAN L,PĂUN G H,ZHANG G.Spiking Neural P Systems with Communication on Request[J].International Journal of Neural Systems,2017,27(8):1750042.
[13]ZHANG X,ZENG X,PAN L Weighted Spiking Neural P Systems with Rules on Synapses[J].Fundamenta Informaticae,2014,134(12):201-218.
[14]CABARLE F G C,DE LA CRUZ R T A,CAILIPAN D P P,et al.On Solutions and Representations of Spiking Neural P Systems with Rules on Synapses [J].Information Sciences,2019,501:30-49.
[15]PAN L,WU T,SU Y,et al.Cell-like Spiking Neural P Systems with Request Rules [J].IEEE Transactions on Nanobioscience,2017,16(6):513-522.
[16]JIANG Y, SU Y S, LUO F.An Improved Universal Spiking Neural P System with Generalized Use of Rules[J].Journal of Membrane Computing,2019,1(4):270-278.
[17]ZHANG L,XU F,RAMANUJANB A.Control Languages Accepted by Labeled Spiking Neural P Systems with Rules on Synapses [J].Theoretical Computer Science,2021,893:60-71.
[18]RONG H,WU T,PAN L,et al.Spiking Neural P Systems:Theo-retical Rresults and Applications[M]//Enjoying Natural Computing.Springer,2018:256-268.
[19]SONG T,PAN L.Spiking Neural P Systems with Request Rules [J].Neurocomputing,2016,193:193-200.
[20]PENG H,WANG J,PÉREZ-JIMÉNZ M J,et al.DynamicThreshold Neural P Systems [J].Knowledge-Based Systems,2019,163:875-884.
[21]PAN L,PĂUN G H,PÉREZ-JIMÉNZ M J.Spiking Neural P Systems with Neuron Division and Budding[J].Science China Information Sciences,2011,54(8):1596-1607.
[22]VERLAN S,FREUND R,ALHAZOV A,et al.A FormalFramework for Spiking Neural P Systems[J].Journal of Membrane Computing,2020,2(4):355-368.
[23]DE LA CRUZ R T A,CABARLE F G C,MACABABAYAO I C H,et al.Homogeneous Spiking Neural P Systems with Structu-ral Plasticity[J].Journal of Membrane Computing,2021,3(1):10-21.
[24]SOSÍK P P Systems Attacking Hard Problems Beyond NP:A Survey [J].Journal of Membrane Computing,2019,1(3):198-208.
[25]CETERCHI R,ZHANG L,SUBRAMANIAN K G,et al.Hilbert Words as Arrays Generated with P Systems [J].Journal of Membrane Computing,2021,3(3):163-169.
[26]LIU Y,CHEN Y,PAUL P,et al.A Review of Power System Fault Diagnosis with Spiking Neural P Systems [J].Applied Sciences,2021,11(10):4376.
[27]DÍAZ-PERNIL D,GUTIÉRREZ-NARANJO M A,PENG H.Membrane Computing and Image Processing:A Short Survey [J].Journal of Membrane Computing,2019,1(1):58-73.
[28]DONG J,ZHANG G,LUO B,et al.A Distributed Adaptive Optimization Spiking Neural P System for Approximately Solving Combinatorial Optimization Problems [J].Information Sciences,2022,596:1-14.
[29]ZENG X,ZHANG X,SONG T,et al.Spiking Neural P Systems with Thresholds [J].Neural Computation,2014,26(7):1340-1361.
[30]SONG T,PAN L,PĂUN G H.Asynchronous Spiking Neural P Systems with Local Synchronization [J].Information Sciences,2013,219:197-207.
[31]AMAN B,CIOBANU G.Synchronization of Rules in MembraneComputing [J].Journal of Membrane Computing,2019,1(4):233-240.
[32]SONG B,PAN L.Rule Synchronization for Tissue P Systems [J].Information and Computation,2021,281:104685.
[33]DASSOW J,PĂUN G H.Regulated Rewriting in Formal Language Theory [M].Berlin:Springer,2012.
[34]ROBERT N M,MICHAEL AA,KFOURY A J.An Introduction to Formal Language Theory [M].New York:Springer,1988.
[35]MINSKY M L.Finite and Infinite Machines [M].Englewood Cliffs Prentice-Hall,1967.
[36]IBARRA O H,WOODWORTH S.Characterizations of Some Re-stricted Spiking Neural P Systems [C]//International Workshop on Membrane Computing.Berlin:Springer,2006:424-442.
[37]JIANG S X,FAN J H,GENG S T,et al.The Computational Power of Spiking Neural P Systems with Polarizations and Extended Rules on Synapses[J].Journal of Chongqing University of Technology(Natural Science),2020, 34(12):177-185.
[1] 张露萍, 徐飞.
具有突触规则的脉冲神经膜系统综述
Survey on Spiking Neural P Systems with Rules on Synapses
计算机科学, 2022, 49(8): 217-224. https://doi.org/10.11896/jsjkx.220300078
[2] 罗云芳, 唐承娥, 韦军.
基于粗糙规则的脉冲神经膜系统计算能力的研究
Computing Ability of Spiking Neural P System Based on Rough Rules
计算机科学, 2020, 47(6A): 626-630. https://doi.org/10.11896/JsJkx.190500120
[3] 程珍.
自组装DNA计算的研究进展及展望
Research Advances and Prospect of DNA Computing by Self-assembly
计算机科学, 2012, 39(5): 14-18.
[4] 李燕.
计算科学的新领域:DNA计算(Ⅱ)

计算机科学, 2006, 33(2): 155-157.
[5] 李燕.
计算科学的新领域:DNA计算(Ⅰ)

计算机科学, 2006, 33(1): 202-204.
[6] 吴帆 叶懋 陈贵海.
广域网虚拟平台:网格计算和对等计算的融合

计算机科学, 2005, 32(5): 23-26.
[7] 胡海星 宋方敏.
一种基于算盘的 —算盘机

计算机科学, 2004, 31(1): 98-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!