计算机科学 ›› 2023, Vol. 50 ›› Issue (1): 156-165.doi: 10.11896/jsjkx.211100183

• 计算机图形学&多媒体 • 上一篇    下一篇

基于地形认知的布料模拟滤波算法

孟华儒, 吴国伟   

  1. 大连理工大学软件学院 辽宁 大连 116621
  • 收稿日期:2021-11-17 修回日期:2022-06-11 出版日期:2023-01-15 发布日期:2023-01-09
  • 通讯作者: 吴国伟(wgwdut@dlut.edu.cn)
  • 作者简介:menghr1996@foxmail.com

Cloth Simulation Filtering Algorithm with Topography Cognition

MENG Huaru, WU Guowei   

  1. School of Software Technology,Dalian University of Technology,Dalian,Liaoning 116621,China
  • Received:2021-11-17 Revised:2022-06-11 Online:2023-01-15 Published:2023-01-09
  • About author:MENG Huaru,born in 1996,postgra-duate.His main research interests include point cloud filtering algorithm design and point cloud based geological hazard identification.
    WU Guowei,born in 1973,Ph.D,professor,Ph.D supervisor,is a member of China Computer Federation.His main research interests include advanced computing and intelligent system.

摘要: 数字高程模型(Digital Elevation Model,DEM)可以反映一个地区的地形特征,具有广泛的科研应用。对激光雷达点云数据进行点云滤波以提取地面点,并对地面点进行插值是构建DEM的常用步骤,其中在点云滤波过程中使用的滤波算法直接影响到最终构建的DEM的精度。布料模拟滤波(Cloth Simulation Filtering,CSF)算法作为一种点云滤波算法,具有模型简单、滤波效率高等优点,其针对平坦地区的滤波精度较高,但在处理复杂地形时会因布料模型的内部弹力以及重力惯性等因素,导致滤波结果的精度较差。为了提升CSF算法在处理复杂地形时的滤波精度和地形适应性,提高其构建DEM的精度,提出了基于地形认知的布料模拟滤波算法(Cloth Simulation Filtering Algorithm with Topography Cognition,CSFTC)。该算法提出了地形认知模型,基于点云数据点的局部分布特征构建认知模型,并将其扩展为粗精度数字高程模型(Rough Digital Elevation Mo-del,R-DEM);通过点云地形归一化实现宏观地形趋势与微观地形细节的分离;最终使用经典CSF算法结合R-DEM实现了点云滤波。文中设计了CSFTC算法与经典CSF算法的对比实验,CSFTC算法的平均总误差率从9.30%下降到5.10%,平均II类误差率从30.02%下降到8.46%。实验结果表明,与经典CSF算法相比,CSFTC算法在平坦地区的滤波精度小幅上升,对复杂地形的滤波精度明显上升,提升了算法的地形适应性;II类误差显著下降有助于提高构建的DEM的精度。

关键词: 地形认知模型, 点云, 布料模拟滤波, 数字高程模型, 地形归一化

Abstract: Digital elevation model(DEM) can reflect the topographic characteristics of an area and has a wide range of scientific research applications.Filtering LIDAR point cloud data,extracting the ground points and interpolating are common steps in constructing DEM.The filtering algorithm used in the process of point cloud filtering directly affects the accuracy of the final DEM.As a point cloud filtering algorithm,cloth simulation filtering(CSF) algorithm has the advantages of simple model and high filtering efficiency.It has high filtering accuracy for flat areas.However,when dealing with complex terrain areas,the accuracy of filtering results will be poor due to the internal elasticity and gravity inertia of the cloth model.In view of this,in order to improve the filtering accuracy and terrain adaptability of CSF algorithm in dealing with complex terrain areas,so as to improve the accuracy of constructing DEM,the cloth simulation filtering algorithm with terrain cognition(CSFTC) is proposed.The algorithm proposes a terrain-cognitive model.Based on the local distribution characteristics of point cloud data points,the terrain-cognitive model is constructed and extended to rough digital elevation model(R-DEM),which realizes the separation of macro terrain trend and micro terrain details through point cloud terrain normalization.Finally,the original CSF algorithm combined with R-DEM is used to realize point cloud filtering.Comparison experiment between CSFTC algorithm and the original CSF algorithm is designed.The average total error rate decreases from 9.30% to 5.10%,and the average type-II error rate decreases from 30.02% to 8.46%.Experimental results show that compared with the original CSF algorithm,the accuracy of CSFTC algorithm increases slightly in flat region and increases significantly in complex region,which improves the terrain adaptability of the algorithm.The significant decrease of type-II error is helpful to improve the accuracy of constructed DEM.

Key words: Terrain-cognitive model, Point cloud, Cloth simulation filtering, Digital elevation model, Terrain normalization

中图分类号: 

  • TP391
[1]BŁASZCZYK M,IGNATIUK D,GRABIEC M,et al.Qualityassessment and glaciological applications of digital elevation models derived from space-borne and aerial images over two tidewater glaciers of southern spitsbergen[J].Remote Sensing,2019,11(9):1121.
[2]XIA Y,LI X J,WANG T.A Hybrid Flow Direction Algorithm for Water Routing on DEMs[J].Acta Geodaetica et Cartograp-hica Sinica,2018,47(5):683-691.
[3]VOSSELMAN G.Slope based filtering of laseraltimetry data[J].International Archives of Photogrammetry and Remote Sensing,2000,33(B3/2;PART 3):935-942.
[4]YANG Y B,ZHANG N N,LI X L.Adaptive slope filtering for airborne Light Detection andRanging data in urban areas based on region growing rule[J].Survey Review,2017,49(353):139-146.
[5]ZHANG K Q,CHEN S C,WHITMAN D,et al.A progressive morphological filter for removing nonground measurements from airborne LIDAR data[J].IEEE Transactions on Geoscience and Remote Sen-sing,2003,41(4):872-882.
[6]HUI Z Y,HU Y J,YEVENYO Y,et al.An Improved Morphological Algorithm for Filtering Airborne LiDAR Point Cloud Based on Multi-Level Kriging Interpolation[J].Remote Sen-sing,2016,8(1):35.
[7]SHI W Z,AHMED W,WU K.Morphologically iterative triangular irregular network for airborne LiDAR filtering[J].Journal of Applied Remote Sensing,2020,14(3):034525.
[8]LIN X G,ZHANG J X.Segmentation-Based Filtering of Air-borne LiDAR Point Clouds by Progressive Densification of Terrain Segments[J].Remote Sensing,2014,6(2):1294-1326.
[9]WANG X K,MA X C,YANG F L,et al.Improved progressive triangular irregular network densification filtering algorithm for airborne LiDAR data based on a multiscale cylindrical neighborhood[J].APPLIED OPTICS,2020,59(22):6540-6550.
[10]ZHANG W M,QI J B,WAN P,et al.An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation[J].Remote Sensing,2016,8(6):501.
[11]CAI S,ZHANG W,LIANG X,et al.Filtering Airborne LiDAR Data Through Complementary ClothSimulation and Progressive TIN Densification Filters[J].Remote Sensing,2019,11(9):1037.
[12]LI F,ZHU H,LUO Z,et al.An Adaptive Surface Interpolation Filter Using Cloth Simulation and Relief Amplitude for Airborne Laser Scanning Data[J].Remote Sensing,2021,13(15):2938.
[13]CHEN C F,LI Y Y,YAN C Q,et al.An improved multi-resolution hierarchical classification method based on robust segmentation for filtering ALS point clouds[J].International Journal of Remote Sensing,2016,37(4):950-968.
[14]FENG F J,DING Y Z,LI J P,et al.Airborne LiDAR point cloud filtering using saliency division[J].Infrared and Laser Enainee-ring,2020,49(8):26-34.
[15]LI H X,YE W Y,LIU J,et al.High-Resolution Terrain Mode-ling Using Airborne LiDAR Data with Transfer Learning[J].Remote Sensing,2021,13(17):3448.
[16]HUI Z Y,JIN S G,CHENG P G,et al.An Active LearningMethod for DEM Extraction From Airborne LiDAR Point Clouds[J].IEEE Access,2019,7:89366-89378.
[17]MAHPHOOD A,AREFI H.Tornado method for ground point filtering from LiDAR point clouds[J].Advances in Space Research,2020,66(7):1571-1592.
[18]TORRES-SÁNCHEZ J,MESAS-CARRASCOSA F J,SANTE-STEBAN L G,et al.Grape Cluster Detection Using UAV Photogrammetric Point Clouds as a Low-Cost Tool for Yield Forecasting in Vineyards[J].Sensors,2021,21(9):3083-3083.
[19]ZHANG C S,LIU Z J,YANG S W,et al.Applicability analysis of cloth simulation filtering algorithm based on LiDAR data[J].Laser Technology,2018,42(3):410-416.
[20]HU W,WANG Y,HU Q.Automatic recognition of diseased trees based on the vertical structure of airborne point clouds:A case studyof diseased trees of Great Smoky Mountains[C]//2016 4th International Workshop on Earth Observation and Remote Sensing Applications(EORSA).IEEE,2016:136-139.
[21]ZOU X F,JIANG H.Automatic Power Line Extraction fromAirborne LIDAR Data in Complex Terrain Background[J].Applied laser,2019,39(4):696-702.
[22]WANG J W,LI X X,ZHANG H Q.Terrain adaptive filtering method based on elevation normalization[J].Laser & Optoelectronics Progress,2022,59(10):466-475.
[23]PROVOT X.Deformation constraints in a mass-spring model to describe rigid cloth behaviour[C]//Graphics interface.Canadian Information Processing Society.1995:147-147.
[24]RUSU R B,COUSINS S.3d is here:Point cloud library(pcl)[C]//2011 IEEE International Conference on Robotics and Automation.IEEE,2011:1-4.
[25]BOOGAARD F P,VAN HENTEN E J,KOOTSTRA G.Boosting plant-part segmentation of cucumber plants by enriching incomplete 3D point clouds with spectral data[J].biosystems engineering,2021,211:167-182.
[26]SUNEGÅRD A,SVENSSON L,SATTLER T.Deep LiDAR localization using optical flow sensor-map correspondences[C]//2020 International Conference on 3D Vision(3DV).IEEE,2020:838-847.
[27]SITHOLE G,VOSSELMAN G.Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds[J].ISPRS journal of photogrammetry and remote sensing,2004,59(1/2):85-101.
[28]COHEN J.A coefficient of agreement for nominal scales[J].Educational and Psychological Measurement,1960,20(1):37-46.
[29]BEXKENS R,CLAESSEN F M A P,KODDE I F,et al.The kappa paradox[J].Shoulder & elbow,2018,10(4):308-308.
[1] 何雄辉, 谭杰夫, 刘哲, 薛超, 杨绍武, 张拥军.
基于稀疏点云分割的适应视角变化的场景识别方法
Viewpoint-tolerant Scene Recognition Based on Segmentation of Sparse Point Cloud
计算机科学, 2023, 50(1): 87-97. https://doi.org/10.11896/jsjkx.211000118
[2] 杨文坤, 原晓佩, 陈小锋, 郭睿.
三维激光雷达点云空间多特征分割
Spatial Multi-feature Segmentation of 3D Lidar Point Cloud
计算机科学, 2022, 49(8): 143-149. https://doi.org/10.11896/jsjkx.210300275
[3] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[4] 封雷, 朱登明, 李兆歆, 王兆其.
一种基于遮罩的稀疏点云滤波算法
Sparse Point Cloud Filtering Algorithm Based on Mask
计算机科学, 2022, 49(5): 25-32. https://doi.org/10.11896/jsjkx.210600129
[5] 任飞, 常青玲, 刘兴林, 杨鑫, 李敏华, 崔岩.
基于点云的室内结构三维重建综述
Overview of 3D Reconstruction of Indoor Structures Based on Point Clouds
计算机科学, 2022, 49(11A): 211000176-11. https://doi.org/10.11896/jsjkx.211000176
[6] 喻孟娟, 聂建辉.
基于PCPNET的点云特征线提取算法
Point Cloud Feature Line Extraction Algorithm Based on PCPNET
计算机科学, 2022, 49(11A): 210800017-6. https://doi.org/10.11896/jsjkx.210800017
[7] 车爱博, 张辉, 李晨, 王耀南.
基于点云数据的交通环境下单阶段三维目标检测方法
Single-stage 3D Object Detector in Traffic Environment Based on Point Cloud Data
计算机科学, 2022, 49(11A): 210900079-6. https://doi.org/10.11896/jsjkx.210900079
[8] 赵新灿, 常寒星, 金仁标.
3D点云形状补全GAN
3D Point Cloud Shape Completion GAN
计算机科学, 2021, 48(4): 192-196. https://doi.org/10.11896/jsjkx.200100048
[9] 姚楠, 张征.
基于三维图像的疤痕面积计算
Scar Area Calculation Based on 3D Image
计算机科学, 2021, 48(11A): 308-313. https://doi.org/10.11896/jsjkx.201100044
[10] 朱威, 绳荣金, 汤如, 何德峰.
基于动态图卷积和空间金字塔池化的点云深度学习网络
Point Cloud Deep Learning Network Based on Dynamic Graph Convolution and Spatial Pyramid Pooling
计算机科学, 2020, 47(7): 192-198. https://doi.org/10.11896/jsjkx.190700180
[11] 曾俊飞,杨海清,吴浩.
面向三维重建的自适应列文伯格-马夸尔特点云配准方法
Adaptive Levenberg-Marquardt Cloud Registration Method for 3D Reconstruction
计算机科学, 2020, 47(3): 137-142. https://doi.org/10.11896/jsjkx.190200261
[12] 史文凯, 张昭晨, 喻孟娟, 吴瑞, 聂建辉.
基于特征检测与深度特征描述的点云粗对齐算法
Point Cloud Coarse Alignment Algorithm Based on Feature Detection and Depth FeatureDescription
计算机科学, 2020, 47(12): 252-257. https://doi.org/10.11896/jsjkx.191000069
[13] 李健, 杨祥如, 何斌.
基于深度学习的几何特征匹配方法
Geometric Features Matching with Deep Learning
计算机科学, 2019, 46(7): 274-279. https://doi.org/10.11896/j.issn.1002-137X.2019.07.042
[14] 吴飞, 赵新灿, 展鹏磊, 关凌.
自适应邻域选择的FPFH特征提取算法
FPFH Feature Extraction Algorithm Based on Adaptive Neighborhood Selection
计算机科学, 2019, 46(2): 266-270. https://doi.org/10.11896/j.issn.1002-137X.2019.02.041
[15] 刘振宇, 关彤.
基于RGB-D图像的头部姿态检测
Head Posture Detection Based on RGB-D Image
计算机科学, 2019, 46(11A): 334-340.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!