计算机科学 ›› 2023, Vol. 50 ›› Issue (5): 230-237.doi: 10.11896/jsjkx.220300008
阳影1, 张凡1,2, 李天瑞1,2,3
YANG Ying1, ZHANG Fan1,2, LI Tianrui1,2,3
摘要: 方面级情感分析是一项细粒度情感分析任务,其目标是对句子中给定的方面词进行情感极性分类。当前的情感分类模型大多在依存句法树上构建图神经网络,从依存句法树上学习方面词与上下文之间的信息,缺乏对句子中情感知识的挖掘。针对这个问题,文中提出了一种基于情感知识的双通道图卷积网络的情感分类模型(Dual-channel Graph Convolutional Network with Sentiment Knowledge,SKDGCN)。该模型由情感增强的依存图卷积网络(Sentiment-enhanced Dependency Graph Convolutional Network,SDGCN)和注意力图卷积网络(Attention Graph Convolutional Network,AGCN)组成,两个图卷积网络分别学习方面词与上下文词的句法依赖关系和语义关系。具体地,SDGCN在句法依存树上融合SenticNet中的情感知识以增强句子的依赖关系,使得模型既考虑了上下文词与方面词的句法关系,也考虑了上下文中意见词与方面词的情感信息;AGCN使用注意力机制学习方面词与句子中上下文的语义相关性;最后使两个图卷积网络交互学习各自的信息进行情感分类。实验结果表明,该模型在多个公开数据集上表现优异,并通过消融实验验证了各个模块的有效性。
中图分类号:
[1]HAN Z M,LI M Q,LIU W,et al.Survey of Studies on Aspect-Based Opinion Mining of Internet[J].Journal of Software,2018,29(2):417-441. [2]LIU B.Sentiment analysis and opinion mining[J].SynthesisLectures on Human Language Technologies,2012,5(1):1-167. [3]BAHDANAU D,CHO K H,BENGIO Y.Neural machine translation by jointly learning to align and translate[C]//3rd International Conference on Learning Representations.2015. [4]ZHANG C,LI Q,SONG D.Aspect-based Sentiment Classification with Aspect-specific Graph Convolutional Networks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.2019:4568-4578. [5]SUN K,ZHANG R,MENSAH S,et al.Aspect-level sentimentanalysis via convolution over dependency tree[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.2019:5679-5688. [6]ZHANG M,QIAN T.Convolution over hierarchical syntacticand lexical graphs for aspect level sentiment analysis[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing.2020:3540-3549. [7]HUANG B,CARLEY K M.Syntax-Aware Aspect Level Sentiment Classification with Graph Attention Networks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Confe-rence on Natural Language Processing.2019:5469-5477. [8]WANG K,SHEN W,YANG Y,et al.Relational Graph Attention Network for Aspect-based Sentiment Analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:3229-3238. [9]TIAN H,GAO C,XIAO X,et al.SKEP:Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computa-tional Linguistics.2020:4067-4076. [10]ZHOU J,HUANG J X,HU Q V,et al.Sk-gcn:Modeling syntax and knowledge via graph convolutional network for aspect-level sentiment classification[J].Knowledge-Based Systems,2020,205:106292. [11]CAMBRIA E,PORIA S,HAZARIKA D,et al.SenticNet 5:Discovering conceptual primitives for sentiment analysis by means of context embeddings[C]//Proceedings of the AAAI Confe-rence on Artificial Intelligence.2018:1795-1802. [12]MA Y,PENG H,CAMBRIA E.Targeted aspect-based senti-ment analysis via embedding commonsense knowledge into an attentive LSTM[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018:5876-5883. [13]TANG H,JI D,LI C,et al.Dependency graph enhanced dual-transformer structure for aspect-based sentiment classification[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:6578-6588. [14]ZHANG Y,LI T R.Review of comment-oriented aspect-based sentiment analysis[J].Computer Science,2020,47(6):194-200. [15]RUMELHART D E,HINTON G E,WILLIAMS R J.Learning representations by back-propagating errors[J].Nature,1986,323(6088):533-536. [16]HOCHREITER S,SCHMIDHUBER J.Long short-term memo-ry[J].Neural Computation,1997,9(8):1735-1780. [17]TANG D,QIN B,FENG X,et al.Effective LSTMs for Target-Dependent Sentiment Classification[C]//Proceedings of COLING 2016,the 26th International Conference on Computational Linguistics:Technical Papers.2016:3298-3307. [18]WANG Y,HUANG M,ZHU X,et al.Attention-based LSTMfor aspect-level sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.2016:606-615. [19]MA D,LI S,ZHANG X,et al.Interactive attention networks for aspect-level sentiment classification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.2017:4068-4074. [20]FAN F,FENG Y,ZHAO D.Multi-grained attention network for aspect-level sentiment classification[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:3433-3442. [21]SONG Y,WANG J,JIANG T,et al.Attentional encoder network for targeted sentiment classification[J].arXiv:1902.09314,2019. [22]DI CARO L,GRELLA M.Sentiment analysis via dependencyparsing[J].Computer Standards & Interfaces,2013,35(5):442-453. [23]HAN H,WU Y H,QIN X Y.An Interactive Graph AttentionNetworks Model for Aspect-level Sentiment Analysis[J].Journal of Electronics & Information Technology,2021,43(11):3282-3290. [24]WANG R Y,TAO Z Y,ZHAO R J,et al.Multi-interactionGraph Convolutional Networks for Aspect-level Sentiment Analysis[J].Journal of Electronics & Information Technology,2022,44(3):1111-1118. [25]TIAN Y,CHEN G,SONG Y.Aspect-based Sentiment Analysis with Type-aware Graph Convolutional Networks and Layer Ensemble[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2021:2910-2922. [26]HOU X,HUANG J,WANG G,et al.Selective Attention Based Graph Convolutional Networks for Aspect-Level Sentiment Classification[C]//Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing.2021:83-93. [27]HOU X,QI P,WANG G,et al.Graph Ensemble Learning over Multiple Dependency Trees for Aspect-level Sentiment Classification[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2021:2884-2894. [28]BIAN X,FENG C,AHMAD A,et al.Targeted Sentiment Classification with Knowledge Powered Attention Network[C]//2019 IEEE 31st International Conference on Tools with Artificial Intelligence.IEEE,2019:1073-1080. [29]HAN H,HAO J,ZHANG Q,et al.Knowledge-Enhanced Interactive Attention Model for Aspect-Based Sentiment Analysis[J/OL].Journal of Frontiers of Computer Science and Technology,2022:1-11.http://fcst.ceaj.org/CN/10.3778/j.issn.1673-9418.2108082. [30]PENNINGTON J,SOCHER R,MANNING C D.Glove:Global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Proces-sing.2014:1532-1543. [31]LIN Z,FENG M,SANTOS C N,et al.A structured self-attentive sentence embedding[C]//International Conference on Learning Representations.2017:1-15. [32]LIANG B,SU H,GUI L,et al.Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks[J].Knowledge-Based Systems,2021,235:107643. [33]PONTIKI M,GALANIS D,PAVLOPOULOS J,et al.SemEval-2014Task 4:Aspect Based Sentiment Analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation.2014:27-35. [34]DONG L,WEI F,TAN C,et al.Adaptive recursive neural network for target-dependent twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics(volume 2:Short papers).2014:49-54. [35]CHEN P,SUN Z,BING L,et al.Recurrent attention network on memory for aspect sentiment analysis[C]//Proceedings of the 2017 Conference on Empirical Methodsin Natural Language Processing.2017:452-461. [36]LIU J,LIU P,ZHU Z,et al.Graph Convolutional Networkswith Bidirectional Attention for Aspect-Based Sentiment Classification[J].Applied Sciences,2021,11(4):1528. |
[1] | 杨斌, 梁婧, 周佳薇, 赵梦赐. 基于注意力机制的可解释点击率预估模型研究 Study on Interpretable Click-Through Rate Prediction Based on Attention Mechanism 计算机科学, 2023, 50(5): 12-20. https://doi.org/10.11896/jsjkx.221000032 |
[2] | 李炳辉, 方欢, 梅振辉. 基于BERT和弱行为轮廓的可解释性事件日志修复方法 Interpretable Repair Method for Event Logs Based on BERT and Weak Behavioral Profiles 计算机科学, 2023, 50(5): 38-51. https://doi.org/10.11896/jsjkx.220900030 |
[3] | 程海阳, 张建新, 孙启森, 张强, 魏小鹏. 基于深度跨模态信息融合网络的股票走势预测 Deep Cross-modal Information Fusion Network for Stock Trend Prediction 计算机科学, 2023, 50(5): 128-136. https://doi.org/10.11896/jsjkx.220400089 |
[4] | 王先旺, 周浩, 张明慧, 朱尤伟. 基于Swin Transformer和三维残差多层融合网络的高光谱图像分类 Hyperspectral Image Classification Based on Swin Transformer and 3D Residual Multilayer Fusion Network 计算机科学, 2023, 50(5): 155-160. https://doi.org/10.11896/jsjkx.220400035 |
[5] | 胡绍凯, 赫晓慧, 田智慧. 基于MLUM-Net的高分遥感影像土地利用多分类方法 Land Use Multi-classification Method of High Resolution Remote Sensing Images Based on MLUM-Net 计算机科学, 2023, 50(5): 161-169. https://doi.org/10.11896/jsjkx.220300110 |
[6] | 贾天豪, 彭力. 残差学习与循环注意力下的SSD目标检测算法 SSD Object Detection Algorithm with Residual Learning and Cyclic Attention 计算机科学, 2023, 50(5): 170-176. https://doi.org/10.11896/jsjkx.220400085 |
[7] | 张雪, 赵晖. 基于多事件语义增强的情感分析 Sentiment Analysis Based on Multi-event Semantic Enhancement 计算机科学, 2023, 50(5): 238-247. https://doi.org/10.11896/jsjkx.220400256 |
[8] | 韩雪明, 贾彩燕, 李轩涯, 张鹏飞. 传播树结构结点及路径双注意力谣言检测模型 Dual-attention Network Model on Propagation Tree Structures for Rumor Detection 计算机科学, 2023, 50(4): 22-31. https://doi.org/10.11896/jsjkx.220200037 |
[9] | 尹恒, 张凡, 李天瑞. 基于多邻接图与多头注意力机制的短期交通流量预测 Short-time Traffic Flow Forecasting Based on Multi-adjacent Graph and Multi-head Attention Mechanism 计算机科学, 2023, 50(4): 40-46. https://doi.org/10.11896/jsjkx.220200079 |
[10] | 雒晓辉, 吴云, 王晨星, 余文婷. 基于用户长短期偏好的序列推荐模型 Sequential Recommendation Model Based on User’s Long and Short Term Preference 计算机科学, 2023, 50(4): 47-55. https://doi.org/10.11896/jsjkx.220100264 |
[11] | 王娅丽, 张凡, 余增, 李天瑞. 基于交互注意力和图卷积网络的方面级情感分析 Aspect-level Sentiment Classification Based on Interactive Attention and Graph Convolutional Network 计算机科学, 2023, 50(4): 196-203. https://doi.org/10.11896/jsjkx.220100105 |
[12] | 于兴崭, 芦天亮, 杜彦辉, 王曦锐, 杨成. 基于合成图像和Xception改进模型的安卓恶意家族分类方法 Android Malware Family Classification Method Based on Synthetic Image and Xception Improved Model 计算机科学, 2023, 50(4): 351-358. https://doi.org/10.11896/jsjkx.220300200 |
[13] | 李帅, 徐彬, 韩祎珂, 廖同鑫. SS-GCN:情感增强和句法增强的方面级情感分析模型 SS-GCN:Aspect-based Sentiment Analysis Model with Affective Enhancement and Syntactic Enhancement 计算机科学, 2023, 50(3): 3-11. https://doi.org/10.11896/jsjkx.220700238 |
[14] | 陈富强, 寇嘉敏, 苏利敏, 李克. 基于图神经网络的多信息优化实体对齐模型 Multi-information Optimized Entity Alignment Model Based on Graph Neural Network 计算机科学, 2023, 50(3): 34-41. https://doi.org/10.11896/jsjkx.220700242 |
[15] | 陈姝睿, 梁子然, 饶洋辉. 细粒度语义知识图谱增强的中文OOV词嵌入学习 Fine-grained Semantic Knowledge Graph Enhanced Chinese OOV Word Embedding Learning 计算机科学, 2023, 50(3): 72-82. https://doi.org/10.11896/jsjkx.220700249 |
|