计算机科学 ›› 2023, Vol. 50 ›› Issue (6A): 220300131-7.doi: 10.11896/jsjkx.220300131
杨达, 罗亮, 郑龙
YANG Da, LUO Liang, ZHENG Long
摘要: 随着人类科学技术水平的高速发展,在应用研究、工程设计等领域存在维数大、阶数高、目标函数多、约束条件复杂等传统算法难以求解的困难问题需要优化和解决。以计算机运算与解决问题水平的持续发展为基础,元启发式优化算法被提出并被证明解决以上类别的问题要优于传统优化方法。作为对元启发式优化算法的补充,文中提出了一种新的用于连续全局优化的元启发式算法:碳循环算法(Carbon Cycle Algorithm,CCA)。该算法模拟了碳元素的自然循环过程,具体为通过模拟动植物呼吸、动物捕食、动植物死亡、分解者分解以及植物光合作用过程,以此为策略来更好地探索和利用搜索空间。通过与一些著名的优化算法在13个基准函数上的测试对比结果,剖析了该算法的计算收敛过程。测试结果表明,该算法具有一定的竞争力并能够解决具有挑战性的问题,可以在大多数基准函数上提供更好的求解精度。
中图分类号:
[1]GOLDBERG DE,HOLLAND J H.Genetic algorithms and machine learning[J/OL].http://dx.doi.org/10.1023/A:-1022602019183. [2]GALLETLY J.Evolutionary algorithms in theory and practice:evolution strategies,evolutionary programming[J/OL].http://dx.doi.org/10.1108/k.1998..27.8.979.4,1998. [3]EATASHPAZ-GARGARI,LUCAS C.Imperialist competitivealgorithm:An algorithm for optimization inspired by imperialistic competition[C]//IEEE Congress on Evolutionary Computation.IEEE,2008. [4]CLUCAS,NASIRI-GHEIDARI R,TOOTOONCHIAN R.Ap-plication of an imperialist competitive algorithm to the design of a linear induction motor[J].Energy Conversion & Management,2010,51(7):1407-1411. [5]DKARABOGA.An idea based on honey bee swarm for numerical optimization[R].Kayseri:Eriyes University,2005. [6]DKARABOGA.A Powerful and Efficient Algorithm for Numeri-cal Function Optimization:Artificial Bee Colony(ABC) Algorthm[J].Journal of Global Optimization,2007,39(3):459-471. [7]JKENNEDY,EBERHART R.Particle Swarm Optimization[C]//Icnn95-International Conference on Neural Networks.IEEE,2002. [8]PAUN.Computing with Membranes[J/OL].https://doi.org/10.1006/jcss.1999.1693. [9]ZHANG J L,WANG X F,LU L,et al.Analysis and Research of Several New Intelligent Optimization Algorithms[J].Journal of Frontiers of Computer Science and Technology,2022,16(1):88-105. [10]ALBA E,DORRONSORO B.The exploration/exploitationtradeoff in dynamic cellular genetic algorithms[J].IEEE Trans.Evol.Comput.,2005,9(2):126-142. [11]LOZANO M,GARCIA-MARTINEZ C.Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification:overview and progress report[J].Comput.Oper.Res.,2010,37(3):481-497. [12]WOLPERT D H,MACREADY W G.No free lunch theorems for optimization[J].IEEE Trans.Evol.Comput.,1997,1:67-82. [13]ZHANG H,YANG J B,ZHANG J Y,et al.Multiple-population Firefly Algorithm-based Energy Management Strategy for Vehicle-mounted Fuel Cell DC Microgrid[C]//Proceedings of the CSEE.2021:13-19. [14]LUO Y B,HAO H Q.A New Biomimetic Algorithm:Population Blocking Growth Simulation Algorithm[J].Journal of Wuhan University of Technology(Transportation Science and Engineering),2021,45(2):372-377. [15]SONG Q.A Beam-PSO Algorithm for Solving TSP[J].Journal of Wuhan University of Technology(Transportation Science and Engineering),2019,43(5):816-819. [16]CHEN Y J,LIU S Y,ZHANG Z C.Multi-strategy Differential Evolutionary Algorithm Oriented by Excellent Individual[J].Computer Engineering and Applications,2022,58(2):137-144 [17]MIRJALILI S.The Ant Lion Optimizer[J].Advances in Engineering Software,2015,83:80-98. [18]MIRJALILI S,MIRJALILI S M,LEWIS A,et al.Grey Wolf Optimizer[J].Advances in Engineering Software,2014,69:46-61. |
|