计算机科学 ›› 2023, Vol. 50 ›› Issue (6A): 220300141-9.doi: 10.11896/jsjkx.220300141
王涛1,4, 郭武士3,4, 邓健5, 陈亮2,4
WANG Tao1,4, GUO Wushi3,4, DENG Jian5, CHEN Liang2,4
摘要: 受限于传统的程式固定的视窗界面人机交互方式,大型分布式工业过程SCADA系统主要运营于中控机房,配置专业人员维持运行,系统建设和运营维护成本很高,因此探索人机自然交互接口,引导系统自适应服务意义重大。以一种面向多种专业领域的分布式SCADA系统为背景,从实际运营的角度分析人机自然交互的核心需求。按照自然语言指令的复杂程度,推荐不同的语义解析算法。首先对指令采取词性标注,确定指令是否包含子指令。对于基本自然语言指令,采用TF-IDF关键词提取算法并结合余弦相似度进行结构化抽取,将其解析为SCADA操控中间语言后经形式化转换为实际操控指令。对于复杂自然语言指令,采用基于依存句法分析的结构化指令解析算法,实现实时操控接口。实验结果表明,所提出的自然语言接口能较好地解决SCADA系统的人机自然语言交互问题,指令解析方面的平均精确率、召回率以及F值分别达到了89.27%,89.28%以及89.27%,平均响应时间为1.593s,特别是为工农业信息化管控提供了更为便捷的交互手段。
中图分类号:
[1]BELLEGARDA J R,SILVERMAN K E A J I T O S,PROCESSING A.Natural language spoken interface control using data-driven semantic inference[J].IEEE Transactions on Speech and Audio Processing,2003,11(3):267-277. [2]ZHENG Z,ZHAI M,PENG H,et al.Architecture and key technologies of distributed SCADA system for power dispatching and control[J].Dianli Xitong Zidonghua/Automation of Electric Power Systems,2017,41:71-77. [3]SU Y,AWADALLAH A H,KHABSA M,et al.Building natural language interfaces to Web APIs[C]//Proceedings of 26th ACM International Conference on Information and Knowledge Management(CIKM 2017).Singapore,2017:177-186. [4]MIN Q,SHI Y,ZHANG Y.A pilot study for Chinese SQL semantic parsing[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing,EMNLP(IJCNLP 2019).Hong Kong,2019:3652-3658. [5]CHU E T H,HUANG Z Z.Dbos:A dialog-based object query system for hospital nurses[J].Sensors(Switzerland),2020,20,1-15. [6]SETYAWAN M Y H,AWANGGA R M,EFENDI S R.Comparison Of Multinomial Naive Bayes Algorithm And Logistic Regression For Intent Classification In Chatbot[C]//Procee-dings of 2018 International Conference on Applied Engineering(ICAE 2018).Batam,Indonesia:2018 IEEE Indonesia CSS/RAS Joint Chapter.2018. [7]LE Q,MIKOLOV T.Distributed representations of sentences and documents[C]//Proceedings of 31st International Confe-rence on Machine Learning(ICML 2014).Beijing,2014:2931-2939. [8]PENNINGTON J,SOCHER R,MANNING C D.GloVe:Global vectors for word representation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP 2014).Doha,2014:1532-1543. [9]DEVLIN J,CHANG M W,LEE K,et al.BERT:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies(NAACL HLT 2019).Minneapolis,2019:4171-4186. [10]HOCHREITER S,SCHMIDHUBER J J N C.Long Short-Term Memory[J].Neural Computation,1997,9(8):1735-1780. [11]CHO K,VAN MERRIENBOER B,GULCEHRE C,et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP 2014).Doha,2014:1724-1734. [12]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-basedlearning applied to document recognition[C]//Proceedings of the IEEE.1998:2278-2323. [13]ZHOU P,SHI W,TIAN J,et al.Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of 54th Annual Meeting of the Association for Computational Linguistics(ACL 2016).Berlin,2016:207-212. [14]KHOMENKO V,SHYSHKOV O,RADYVONENKO O,et al.Accelerating recurrent neural network training using sequence bucketing and multi-GPU data parallelization[C]//Proceedings of 1st IEEE International Conference on Data Stream Mining and Processing(DSMP 2016).Lviv,2016:100-103. [15]VERLEYSEN M,FRANCOIS D.The curse of dimensionality indata mining and time series prediction.In Proceedings of 8th International Workshop on Artificial Neural Networks[C]//Computational Intelligence and Bioinspired Systems(IWANN 2005).Vilanova i la Geltru,2005:758-770. [16]GOODMAN B A,GROS Z,et al.Research in knowledge repre-sentation for natural language communication and planning assistance[R].1988. [17]BENGIO Y,DUCHARME R,VINCENT P,et al.A Neural Probabilistic Language Model[J].Journal of Machine Learning Research,2003. [18]SOWMYA KAMATH S,ANANTHANARAYANA V S.Discovering composable web services using functional semantics and service dependencies based on natural language requests[J].Information Systems Frontiers 2019,21:175-189. [19]TIAN C Y,CHEN D H,WANG M,et al.Structured Proces-sing for Pathological Reports Based on Dependency Parsing[J].Journal of Computer Research and Development,2016,53:2669-2680. [20]XU X,LIU C,SONG D.SQLNet:Generating Structured Queries From Natural Language Without Reinforcement Learning[J].arXiv:1711.04436,2017. [21]YU T,LI Z,ZHANG Z,et al.TypeSQL:Knowledge-based type-aware neural text-to-SQL generation[C]//Proceedings of 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2018:588-594. [22]HWANG W,YIM J,PARK S,et al.A Comprehensive Exploration on WikiSQL with Table-Aware Word Contextualization[J].arXiv:1902.01069,2019. |
|