计算机科学 ›› 2023, Vol. 50 ›› Issue (6A): 220300284-7.doi: 10.11896/jsjkx.220300284

• 软件&交叉 • 上一篇    下一篇

基于流线距离聚类的海洋数据向量场可视化

王朕1,2, 杨政威1, 高顺起1, 张磊1   

  1. 1 天津财经大学理工学院 天津 300222;
    2 自然资源部海洋信息技术创新中心 天津 300171
  • 出版日期:2023-06-10 发布日期:2023-06-12
  • 通讯作者: 王朕(wangzhen@tjufe.edu.cn)
  • 基金资助:
    自然资源部海洋信息技术创新中心开放基金(201906);国家自然科学基金(62172294)

Visualization of Ocean Data Vector Field Based on Streamline Distance Clustering

WANG Zhen1,2, YANG Zhengwei1, GAO Shunqi1, ZHANG Lei1   

  1. 1 School of Science and Technology,Tianjin University of Finance and Economics,Tianjin 300222,China;
    2 Marine Information Technology Innovation Center,Ministry of Natural Resources,Tianjin 300171,China
  • Online:2023-06-10 Published:2023-06-12
  • About author:WANG Zhen,born in 1981,Ph.D,associate professor,is a member of China Computer Federation.His main research interests include multi-dimensional reconstruction and visualization for application in computed tomography and computer vision.
  • Supported by:
    Open Fund of the Marine Information Technology Innovation Center of the Ministry of Natural Resources(201906) and National Natural Science Foundation of China(62172294).

摘要: 流线可视化是海洋向量场可视化的重要研究对象,其中流线种子点的数量和位置设定是基础,而生成流线的准确聚类以及类内代表性流线的选取是消除冗余流线造成的视觉混乱和遮挡问题的关键。文中提出将PDM距离作为流线聚类的相似性度量值,在流线端点聚类的基础上再进行流线精细聚类,有效解决端点聚类结果不准确的问题,提升了流线聚类的准确性。通过排序聚类后类内流线对的PDM距离值,提取中线和边界线进行流线重绘,减少了流线遮挡和杂乱现象。针对基于距离的流线聚类计算量大的问题,提出了MDS算法以提升计算速度。此外,采取临界点检测算法减少了流线生成过程中耗时的漩涡生成,进一步提升了计算速度。使用中国沿海的海洋流场数据进行实验,验证了算法的有效性和优越性,流线绘制效果良好。

关键词: 聚类, 向量场可视化, 流线距离

Abstract: Streamlines visualization is an important research object of ocean vector field visualization,in which the setting of number and location for streamlines seed points is the basis.The key to the problem,how to eliminate the visual confusion and occlusion caused by multiple streamlines,is the accurate clustering of generated streamlines and the selection of appropriate represen-tative streamlines within the clustering.In this paper,the PDM distance is proposed to be the similarity measurement,then the fine streamline clustering is implemented after once endpoints streamline clustering.The proposed method effectively solves the problem of inaccurate endpoint clustering results and improves the accuracy of streamline clustering.After sort of all the PDM distance within each clustering,we extract midline and two boundary lines to redraw the streamlines,so as to reduce the pheno-menon of visual confusion and occlusion caused by multiple streamlines.For the problem of huge amount of calculation,the MDS algorithm is proposed to reduce dimension and accelerate computing speed.In addition,in order to further accelerate the calculation speed,the critical point detection algorithm is adopted to reduce the time-consuming vortex generation during the process ofstreamline generation.The effectiveness and superiority of our proposed method are verified by using ocean flow field data from China coast,and the drawing effect of streamline is good.

Key words: Clustering, Vector field visualization, Streamline distance

中图分类号: 

  • TP391
[1]FAN Y,WU X Q,ZHANG J K,et al.Research and realization of flow field dynamic visualization based on geometric shader[J].Computer Engineering and Applications,2019,55(9):157-161.
[2]DU X,LIU H,TSENG H W,et al.A vector field texture gene-ration method without convolution calculation[J].Symmetry,2020,12(5):724-746.
[3]CABRAL B,LEEDOM L C.Imaging vector fields using line integral convolution[C]//Proceedings of the 20st Annual Confe-rence on Computer Graphics and Interactive Techniques.SIGGRAPH,1993:263-270.
[4]VAN WIJK J J.Spot noise texture synthesis for data visualization[C]//Proceedings of Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH.New York:ACM Press,1991:309-318.
[5]VAN WIJK J J.Image based flow visualization[J].ACM Tran-sactions on Graphics,2002,21(3):745-754.
[6]JI X F,ZHANG F,WANG Z Y,et al.Research of dynamicstreamline visualization of ocean flow field with real-time construction of coloring model[J].Journal of Zhejiang Univer-sity(Science Edition),2020,47(1):45-51.
[7]WANG S R,WANG G P.Clustering based 2d vector field Visua-lization[J].Journal of Computer-Aided Design and Computer Graphics,2014,26(10):1593-1602.
[8]SILESS V,MEDINA S,VAROQUAX G,et al.A comparison of metrics and algorithms for fiber clustering[C]//Proceedings of the 2013 International Workshop on Pattern Recognition in Neuroimaging.2013:190-193.
[9]AUZIAS G,J GLAUNÉS,COLLIOT O,et al.DISCO:a coherent diffeomorphic framework for brain registration under exhaustive sulcal constraints[C]//Proceedings of International Conference on Medical Image Computing and Computer-assisted Intervention.Springer-Verlag,2009:730-738.
[10]JOBARD B,LEFER W.Creating evenly-spaced streamlines ofarbitrary density[C]//Proceedings of Visualization in Scientific Computing.Heidelberg:Springer,1997:43-55.
[11]LIU Z,MOORHEAD R,GRONER J.An Advanced Evenly-Spaced Streamline Placement Algorithm[J].IEEE Transactions on Visualization and Computer Graphics,2006,12(5):965-972.
[12]MEBARKI A,ALLIEZ P,DEVILLERS O.Farthest point seeding for efficient placement of streamlines[C]//Proceedings of IEEE Visualization.Washington D C:IEEE Computer Society Press,2005:479-486.
[13]VERMA V,KAO D,PANG A.A flow-guided streamline see-ding strategy[C]//Proceedings of the Conference on Visualization.Los Alamitos:IEEE Computer Society Press,2000:163-170.
[14]COROUGE I,GOUTTARD S,GERIG G.Towards a shapemodel of white matter fiber bundles using diffusion tensor MRI[C]//Proceedings of 2004 2nd IEEE International Symposium on Biomedical Imaging:Nano to Macro.2004:344-347.
[15]DING Z H,GORE J C,ANDERSON A W.Case study:reconstruction,visualization and quantification of neuronal fiber pathways[C]//Proceedings of IEEE Visualization.2001:453-456.
[16]BRUN A,PARK H,KNUTSSON H,et al.Coloring of DT-MRI Fiber Traces Using Laplacian Eigenmaps[C]//Proceedings of Lecture Notes in Computer Science.Springer-Verlag,2003:518-529.
[17]SHENE C K,WANG C L,YU H F,et al.Hierarchical stream-line bundles[J].IEEE Transaction on Visualization and Computer Graphics,2012,18(8):1353-1367.
[18]MCLOUGHLIN T,JONES M W,LARAMEE R S,et al.Similarity Measures for Enhancing Interactive Streamline Seeding[J].IEEE Transactions on Visualization and Computer Gra-phics,2013,19(8):1342-1353.
[19]LU D Y,ZHU D M,WANG Z Q.Streamline Selection Algorithm for Three-Dimensional Flow Fields[J].Journal of Computer-Aided Design and Computer Graphics,2013,25(5):666-673.
[20]ESTER M,KRIEGEL H P,SANDER J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the Second International Conference on Knowledge Discovery and Data Mining.AAAI,1996:226-231.
[21]MCLOUGHLIN T,JONES M W,LARAMEE R S,et al.Similarity measures for enhancing interactive streamline seeding[J].IEEE Transactions on Visualization and Computer Graphics,2013,19(8):1342-1353.
[22]CHEN C K,YAN S,YU H F,et al.An illustrative visualization framework for 3d vector fields[C]//Proceedings of Computer Graph.Forum,2011:1941-1951.
[23]DONNELL L J O,WESTIN C F,GOLBY A J.Tract-basedmorphometry for white matter group analysis[J].NeuroImage,2009,45(3):832-844.
[24]OELTZE S,LEHMANN D J,THEISEL H,et al.Evaluation of streamline clustering techniques for blood flow data[R].Otto-von-Guericke-Universität Magdeburg,Technical Report,2012.
[25]OELTZE S,LEHMANN D.J,KUHN A,et al.Blood flow clustering and applications in virtual stenting of intracranial aneurysms[J].IEEE Transactions on Visualization and Computer Graphics,2014,20(5):686-701.
[26]DAVIES D L,BOULDIN D W.A cluster separation measure[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1979,1(2):224-227.
[27]DU J,WANG X,HU L J.Technology of nonlinear dimension reduction and its application in visualization[J].Journal of Dong-hua University(Natural Science),2020,46(4):675-680.
[28]HELMAN J L,HESSELINK L.Visualizing vector field topology in fluid flows[J].IEEE Computer Graphics and Applications,1991,11(3):36-46.
[29]GAN J,LIU Z,LIANG L.Numerical modeling of intrinsicallyand extrinsically forced seasonal circulation in the China Seas:A kinematic study[J].Journal of Geophysical Research:Oceans,2016,121(7):4697-4715.
[30]SHI L Y,LARAMEE R,CHEN G N.Integral curve clustering and simplification for flow visualization:a comparative evaluation[J].IEEE Transactions on Visualization and Computer Graphics,2021,27(3):1967-1985.
[31]XIONG G Z,HUANG Z B,DAI Z T,et al.A data driven cha-racteristically filtering method for 3d flow field[J].Journal of Beijing University of Posts and Telecommunications,2019,42(6):91-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!