计算机科学 ›› 2023, Vol. 50 ›› Issue (5): 262-269.doi: 10.11896/jsjkx.220400126
叶瀚, 李欣, 孙海春
YE Han, LI Xin, SUN Haichun
摘要: 实体信息充足与否直接影响着有赖于文本实体信息的相关应用,而常规的实体识别模型仅能对已存在的实体进行识别。文中提出以序列标注任务定义实体缺失检测任务,并提出了相应的3种实体缺失检测模型的训练数据构造方法。根据实体缺失任务的识别特点,提出了融合门控机制的卷积神经网络与预训练语言模型相结合的实体缺失检测方法。通过实验发现,基于预训练语言模型与门控卷积网络的模型对人名类、组织类、地点类实体缺失识别的F1最高分别达80.45%,83.02%和86.75%,显著高于基于LSTM的实体识别模型。通过字频统计发现,运用不同标注方法的数据集所训练的模型的准确率与被标注字符字频存在相关性。
中图分类号:
[1]FAN M,FENG C,GUO L,et al.Product-Aware HelpfulnessPrediction of Online Reviews[C]//The World Wide Web Conference(WWW '19).ACM Press,2019:2715-2721. [2]YANG Y,CHEN C,BAO F S.Aspect-Based Helpfulness Prediction for Online Product Reviews[C]//2016 IEEE 28th International Conference on Tools with Artificial Intelligence(IC-TAI).IEEE,2016:836-843. [3]ALIKANIOTIS D,YANNAKOUDAKIS H,REI M.Automatic Text Scoring Using Neural Networks[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).Association for Computa-tional Linguistics,2016:715-725. [4]TAY Y,PHAN M C,TUAN L A,et al.SkipFlow:Incorporating Neural Coherence Features for End-to-End Automatic Text Scoring[C]//Thirty-Second AAAI Conference on Artificial Intelligence.Association for the Advancement of Artificial Intelligence,2018:5948-5955. [5]SUN F,ZHANG J.Research on Grammar Checking SystemUsing Computer Big Data and Convolutional Neural Network Constructing Classification Model[J].Journal of Physics:Conference Series,2021,1952(4):042097,1-9. [6]HAO S,HAO G.A Research on Online Grammar Checker Sys-tem Based on Neural Network Model[J].Journal of Physics:Conference Series,2020,1651(1):012135,1-8. [7]LAMPLE G,BALLESTEROS M,SUBRAMANIAN S,et al.Neural Architectures for Named Entity Recognition[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Association for Computational Linguistics,2016:260-270. [8]LIU Y,GOPALAKRISHNAN V.An Overview and Evaluation of Recent Machine Learning Imputation Methods Using Cardiac Imaging Data[J].Data,2017,2(1):8,1-15. [9]BIESSMANN F,RUKAT T,SCHMIDT P,et al.DataWig:Missing Value Imputation for Tables[J].Journal of Machine Learning Research,2019,20(175):1-6. [10]LI F,GUI Z,WU H,et al.Big enterprise registration data imputation:Supporting spatiotemporal analysis of industries in China[J].Computers,Environment and Urban Systems,2018,70:9-23. [11]GRAVES A,MOHAMED A R,HINTON G.Speech Recogni-tion with Deep Recurrent Neural Networks[C]//2013 IEEE International Conference on Acoustics,Speech and Signal Proces-sing.IEEE,2013:6645-6649. [12]MA X,HOVY E.End-to-end Sequence Labeling via Bi-direc-tional LSTM-CNNs-CRF[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics(Vo-lume 1:Long Papers).Association for Computational Linguistics,2016:1064-1074. [13]DEVLIN J,CHANG M W,LEE K,et al.BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 1(Long and Short Papers).2019:4171-4186. [14]LI X,ZHANG H,ZHOU X H.Chinese clinical named entityrecognition with variant neural structures based on BERT me-thods[J].Journal of Biomedical Informatics,2020,107:103422,1-7. [15]LIU S,YANG H,LI J,et al.Chinese Named Entity Recognition Method in History and Culture Field Based on BERT[J].International Journal of Computational Intelligence Systems,2021,14(1):163. [16]FU J,LIU P,ZHANG Q.Rethinking Generalization of Neural Models:A Named Entity Recognition Case Study[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.2020:7732-7739. [17]AGARWAL O,YANG Y,WALLACE B C,et al.Interpretability Analysis for Named Entity Recognition to Understand System Predictions and How They Can Improve[J].Computational Linguistics,2021,47(1):117-140. [18]CHEN H,HE B.Automated Essay Scoring by Maximizing Human-Machine Agreement[C]//Proceedings of the 2013 Confe-rence on Empirical Methods in Natural Language Processing.Association for Computational Linguistics,2013:1741-1752. [19]TAGHIPOUR K,NG H T.A Neural Approach to Automated Essay Scoring[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.Association for Computational Linguistics,2016:1882-1891. [20]KUMARASWAMY R,WAZALWAR A,KHOT T,et al.Anomaly Detection in Text:The Value of Domain Knowledge[C]//Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference.Association for the Advancement of Artificial Intelligence,2015:225-228. [21]CICHOSZ P.Unsupervised modeling anomaly detection in discussion forums posts using global vectors for text representation[J].Natural Language Engineering,2020,26(5):551-578. [22]RUFF L,ZEMLYANSKIY Y,VANDERMEULEN R,et al.Self-Attentive,Multi-Context One-Class Classification for Unsupervised Anomaly Detection on Text[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.Association for Computational Linguistics,2019:4061-4071. [23]RUFF L,KAUFFMANN J R,VANDERMEULEN R A,et al.A Unifying Review of Deep and Shallow Anomaly Detection[J].Proceedings of the IEEE,2021,109(5):756-795. [24]DAUPHIN Y N,FAN A,AULI M,et al.Language Modelingwith Gated Convolutional Networks[C]//Proceedings of the 34th International Conference on Machine Learning.2017:933-941. [25]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isAll You Need[C]//The 31st International Conference on Neural Information Processing Systems.Curran Associates Inc.,2017:6000-6010. [26]LEVOW G A.The Third International Chinese Language Processing Bakeoff:Word Segmentation and Named Entity Recognition[C]//Proceedings of the 5th SIGHAN Workshop on Chinese Language Processing.Association for Computational Linguistics.2006:108-117. [27]HE K,ZHANG X,REN S,et al.Deep Residual Learning forImage Recognition[C]//the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2016:770-778. [28]KINGMA D P,BA J.Adam:A Method for Stochastic Optimization[C]//3rd International Conference on Learning Representations.2015. |
[1] | 赵松, 傅豪, 王洪星. 伪异常选择驱动学习的视频异常检测 Pseudo-abnormal Sample Selection for Video Anomaly Detection 计算机科学, 2023, 50(5): 146-154. https://doi.org/10.11896/jsjkx.220400227 |
[2] | 张雪, 赵晖. 基于多事件语义增强的情感分析 Sentiment Analysis Based on Multi-event Semantic Enhancement 计算机科学, 2023, 50(5): 238-247. https://doi.org/10.11896/jsjkx.220400256 |
[3] | 汪林, 蒙祖强, 杨丽娜. 基于多级多尺度特征提取的CNN-BiLSTM模型的中文情感分析 Chinese Sentiment Analysis Based on CNN-BiLSTM Model of Multi-level and Multi-scale Feature Extraction 计算机科学, 2023, 50(5): 248-254. https://doi.org/10.11896/jsjkx.220400069 |
[4] | 张仁斌, 左艺聪, 周泽林, 王龙, 崔宇航. 基于多模态生成对抗网络的多元时序数据异常检测 Multimodal Generative Adversarial Networks Based Multivariate Time Series Anomaly Detection 计算机科学, 2023, 50(5): 355-362. https://doi.org/10.11896/jsjkx.220400221 |
[5] | 常利伟, 刘秀娟, 钱宇华, 耿海军, 赖裕平. 基于卷积神经网络多源融合的网络安全态势感知模型 Multi-source Fusion Network Security Situation Awareness Model Based on Convolutional Neural Network 计算机科学, 2023, 50(5): 382-389. https://doi.org/10.11896/jsjkx.220400134 |
[6] | 邵云飞, 宋友, 王宝会. 基于社交网络图节点度的神经网络个性化传播算法研究 Study on Degree of Node Based Personalized Propagation of Neural Predictions forSocial Networks 计算机科学, 2023, 50(4): 16-21. https://doi.org/10.11896/jsjkx.220300274 |
[7] | 王振彪, 覃亚丽, 王荣芳, 郑欢. 基于残差特征聚合的图像压缩感知注意力神经网络 Image Compressed Sensing Attention Neural Network Based on Residual Feature Aggregation 计算机科学, 2023, 50(4): 117-124. https://doi.org/10.11896/jsjkx.211200215 |
[8] | 曹晨阳, 杨晓东, 段鹏松. WiDoor:一种近距离非接触式身份识别方法 WiDoor:Close-range Contactless Human Identification Approach 计算机科学, 2023, 50(4): 388-396. https://doi.org/10.11896/jsjkx.220300278 |
[9] | 李帅, 徐彬, 韩祎珂, 廖同鑫. SS-GCN:情感增强和句法增强的方面级情感分析模型 SS-GCN:Aspect-based Sentiment Analysis Model with Affective Enhancement and Syntactic Enhancement 计算机科学, 2023, 50(3): 3-11. https://doi.org/10.11896/jsjkx.220700238 |
[10] | 饶丹, 时宏伟. 基于深度聚类的航空交通流识别与异常检测研究 Study on Air Traffic Flow Recognition and Anomaly Detection Based on Deep Clustering 计算机科学, 2023, 50(3): 121-128. https://doi.org/10.11896/jsjkx.220100086 |
[11] | 王晓飞, 樊学强, 李章维. 基于迁移学习和多视图特征融合提高RNA碱基相互作用预测 Improving RNA Base Interactions Prediction Based on Transfer Learning and Multi-view Feature Fusion 计算机科学, 2023, 50(3): 164-172. https://doi.org/10.11896/jsjkx.211200186 |
[12] | 梅鹏程, 杨吉斌, 张强, 黄翔. 一种基于三维卷积的声学事件联合估计方法 Sound Event Joint Estimation Method Based on Three-dimension Convolution 计算机科学, 2023, 50(3): 191-198. https://doi.org/10.11896/jsjkx.220500259 |
[13] | 环志刚, 蒋国权, 张玉健, 刘浏, 刘姗姗. 门控机制融合多种特征的中文事件共指消解 Employing Gated Mechanism to Incorporate Multi-features into Chinese Event Coreference Resolution 计算机科学, 2023, 50(3): 291-297. https://doi.org/10.11896/jsjkx.220700146 |
[14] | 崔竞松, 张童桐, 郭迟, 郭文飞. 基于时延特征的网络设备异常检测 Network Equipment Anomaly Detection Based on Time Delay Feature 计算机科学, 2023, 50(3): 371-379. https://doi.org/10.11896/jsjkx.211200280 |
[15] | 曹金娟, 钱忠, 李培峰. 基于联合模型的端到端事件可信度识别 End-to-End Event Factuality Identification with Joint Model 计算机科学, 2023, 50(2): 292-299. https://doi.org/10.11896/jsjkx.211200108 |
|