计算机科学 ›› 2022, Vol. 49 ›› Issue (11): 351-359.doi: 10.11896/jsjkx.220400285

• 信息安全 • 上一篇    下一篇

面向网络侦察欺骗的差分隐私指纹混淆机制

何源, 邢长友, 张国敏, 宋丽华, 余航   

  1. 陆军工程大学指挥控制工程学院 南京 210007
  • 收稿日期:2022-04-28 修回日期:2022-07-23 出版日期:2022-11-15 发布日期:2022-11-03
  • 通讯作者: 邢长友(changyouxing@126.com)
  • 作者简介:(784510649@qq.com)
  • 基金资助:
    国家自然科学基金面上项目(62172432,61772271)

Differential Privacy Based Fingerprinting Obfuscation Mechanism Towards NetworkReconnaissance Deception

HE Yuan, XING Chang-you, ZHANG Guo-min, SONG Li-hua, YU Hang   

  1. College of Command and Control Engineering,Army Engineering University of PLA,Nanjing 210007,China
  • Received:2022-04-28 Revised:2022-07-23 Online:2022-11-15 Published:2022-11-03
  • About author:HE Yuan,born in 1998,postgraduate.His main research interests include cyber deception defense and game theory.
    XING Chang-you,born in 1982,Ph.D,professor.His main research interests include network proactive defense,software defined networking and network measurement.
  • Supported by:
    National Natural Science Foundation of China(62172432,61772271).

摘要: 网络指纹探测作为一种重要的网络侦察手段,可以被攻击者用于获取目标网络的指纹特征,进而为后续开展有针对性的攻击行动提供支持。指纹混淆技术通过主动修改响应分组中的指纹特征,能够让攻击者形成虚假的指纹视图,但现有的混淆方法在应对攻击者策略性探测分析方面仍存在不足。为此,提出了一种面向网络侦察欺骗的差分隐私指纹混淆机制(Differential Privacy based Obfuscation of Fingerprinting,DPOF)。DPOF参考数据隐私保护的思想,首先建立了效用驱动的差分隐私指纹混淆模型,通过差分隐私指数机制计算不同效用虚假指纹的混淆概率,在此基础上进一步设计了资源约束下的指纹混淆决策方法,并实现了基于粒子群优化的混淆策略求解算法。仿真实验结果表明,相比现有的典型指纹混淆方法,DPOF在不同问题规模和预算情况下均具有更优的指纹混淆效果,且能够以更快的速度获得更好的近似最优策略。

关键词: 指纹混淆, 差分隐私, 网络侦察, 网络欺骗防御

Abstract: Network fingerprinting detection is an important network reconnaissance method,which can be used by attackers to obtain the fingerprinting characteristics of the target network,and then provide support for subsequent targeted attacks.Fingerprinting obfuscation technology enables attackers to form fake fingerprinting views by actively modifying the fingerprinting features in response packets.However,existing obfuscation methods are still insufficient in dealing with attackers’ strategic detection and analysis.To this end,a differential privacy based fingerprinting obfuscation mechanism(DPOF) towards network reconnaissance deception is proposed.Taking the idea of data privacy protection as a reference,DPOF first establishes a utility-driven differential privacy fingerprinting obfuscation model,and calculates the obfuscation probability of fake fingerprints with different utilities through the differential privacy exponential mechanism.On this basis,a fingerprinting obfuscation decision method under resource constraint is further designed,and an obfuscation strategy solving algorithm based on particle swarm optimization is implemented.Simulation results show that compared with the existing typical fingerprinting obfuscation methods,DPOF has better fingerprinting obfuscation effect with different problem scales and budgets,and can obtain a better approximate optimal strategy at a faster speed.

Key words: Fingerprinting obfuscation, Differential privacy, Network reconnaissance, Cyber deception defense

中图分类号: 

  • TP393
[1]LYON G F.Nmap network scanning:The official Nmap project guide to network discovery and security scanning[M].US:Insecure,2008.
[2]AUFFRET P.SinFP,unification of active and passive operating system fingerprinting[J].Journal in Computer Virology,2010,6(3):197-205.
[3]KOHNO T,BROIDO A,CLAFFY K C.Remote physical device fingerprinting[J].IEEE Transactions on Dependable and Secure Computing,2005,2(2):93-108.
[4]BRYANT B D,SAIEDIAN H.A novel kill-chain framework for remote security log analysis with SIEM software[J].Computers &Security,2017,67:198-210.
[5]ZHU M,ANWAR A H,WAN Z L,et al.A survey of defensive deception:Approaches using game theory and machine learning[J].IEEE Communications Surveys & Tutorials,2021,23(4):2460-2493.
[6]AKSOY A,LOUIS S,GUNES M H.Operating system finger-printing via automated network traffic analysis[C]//2017 IEEE Congress on Evolutionary Computation(CEC).IEEE,2017:2502-2509.
[7]HAGOS D H,YAZIDI A,KURE Ø,et al.A Machine-Learning-Based Tool for Passive OS Fingerprinting With TCP Variant as a Novel Feature[J].IEEE Internet of Things Journal,2020,8(5):3534-3553.
[8]HAGOS D H,LØLAND M,YAZIDI A,et al.Advanced PassiveOperating System Fingerprinting Using Machine Learning and Deep Learning[C]//2020 29th International Conference on Computer Communications and Networks(ICCCN).IEEE,2020:1-11.
[9]YE D Y,ZHU T Q,SHEN S,et al.A differentially private gametheoretic approach for deceiving cyber adversaries[J].IEEE Transactions on Information Forensics and Security,2020,16:569-584.
[10]SCHLENKER A,THAKOOR O,XU H F,et al.Deceiving cyber adversaries:A game theoretic approach[C]//International Conference on Autonomous Agents and Multiagent Systems.2018:892-900.
[11]ALBANESE M,BATTISTA E,JAJODIA S.A deception based approach for defeating OS and service fingerprinting[C]//2015 IEEE Conference on Communications and Network Security(CNS).IEEE,2015:317-325.
[12]WANG Y L,GUO J,ZHANG J C,et al.Moving OS fingerprint adaptively in SDN network[C]//2017 3rd IEEE International Conference on Computer and Communications(ICCC).IEEE,2017:438-442.
[13]SHI Y,ZHANG H G,WANG J,et al.Chaos:An SDN-based moving target defense system[J].arXiv:1704.01482,2017.
[14]PAWLICK J,COLBERT E,ZHU Q Y.A game-theoretic taxo-nomy and survey of defensive deception for cybersecurity and privacy[J].ACM Computing Surveys(CSUR),2019,52(4):1-28.
[15]LIU J W,LIU J J,LU Y L,et al.Optimal Defense Strategy Selection Method Based on Network Attack-Defense Game Model[J].Computer Science,2018,45(6):117-123.
[16]LI S H,ZHANG G M,SONG L H,et al.Incomplete Information Game Theoretic Analysis to Defend Fingerprinting[J].Computer Science,2021,48(8):291-299.
[17]JAJODIA S,PARK N,PIERAZZI F,et al.A probabilistic logic of cyber deception[J].IEEE Transactions on Information Forensics and Security,2017,12(11):2532-2544.
[18]RAHMAN M A,HASAN M G M M,MANSHAEI M H,et al.A game-theoretic analysis to defend against remote operating system fingerprinting[J].Journal of Information Security and Applications,2020,52:102456.
[19]PAWLICK J,COLBERT E,ZHU Q Y.Modeling and analysis of leaky deception using signaling games with evidence[J].IEEE Transactions on Information Forensics and Security,2018,14(7):1871-1886.
[20]BILINSKI M,FERGUSON-WALTER K,FUGATE S,et al.You only lie twice:A multi-round cyber deception game of questionable veracity[C]//International Conference on Decision and Game Theory for Security.Cham:Springer,2019:65-84.
[21]SUN P Y,ZHANG H W,MA J Q,et al.A Selection Strategy for Network Security Defense Based on a Time Game Model[C]//2021 International Conference on Digital Society and Intelligent Systems(DSInS).IEEE,2021:223-228.
[22]WAN Z L,CHO J H,ZHU M,et al.Foureye:Defensive Deception Against Advanced Persistent Threats via Hypergame Theory[J].IEEE Transactions on Network and Service Management,2021,19(1):112-129.
[23]DWORK C.Differential privacy[C]//International Colloquium on Automata,Languages,and Programming.Berlin:Springer,2006:1-12.
[24]HASSAN M U,REHMANI M H,CHEN J J.Differential privacy techniques for cyber physical systems:a survey[J].IEEE Communications Surveys & Tutorials,2019,22(1):746-789.
[25]WEI K,LI J,DING M,et al.Federated learning with differential privacy:Algorithms and performance analysis[J].IEEE Transa-ctions on Information Forensics and Security,2020,15:3454-3469.
[26]JIANG B,LI J Q,YUE G H,et al.Differential Privacy for Industrial Internet of Things:Opportunities,Applications,and Challenges[J].IEEE Internet of Things Journal,2021,8(13):10430-10451.
[1] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[2] 高春刚, 王永杰, 熊鑫立.
MTDCD:一种对抗网络入侵的混合防御机制
MTDCD:A Hybrid Defense Mechanism Against Network Intrusion
计算机科学, 2022, 49(7): 324-331. https://doi.org/10.11896/jsjkx.210600193
[3] 黄觉, 周春来.
基于本地化差分隐私的频率特征提取
Frequency Feature Extraction Based on Localized Differential Privacy
计算机科学, 2022, 49(7): 350-356. https://doi.org/10.11896/jsjkx.210900229
[4] 王美珊, 姚兰, 高福祥, 徐军灿.
面向医疗集值数据的差分隐私保护技术研究
Study on Differential Privacy Protection for Medical Set-Valued Data
计算机科学, 2022, 49(4): 362-368. https://doi.org/10.11896/jsjkx.210300032
[5] 孔钰婷, 谭富祥, 赵鑫, 张正航, 白璐, 钱育蓉.
基于差分隐私的K-means算法优化研究综述
Review of K-means Algorithm Optimization Based on Differential Privacy
计算机科学, 2022, 49(2): 162-173. https://doi.org/10.11896/jsjkx.201200008
[6] 时坤, 周勇, 张启亮, 姜顺荣.
基于联盟链的能源交易数据隐私保护方案
Privacy-preserving Scheme of Energy Trading Data Based on Consortium Blockchain
计算机科学, 2022, 49(11): 335-344. https://doi.org/10.11896/jsjkx.220300138
[7] 王修君, 莫磊, 郑啸, 高云全.
面向数据流滑动窗口的自适应直方图发布算法
Adaptive Histogram Publishing Algorithm for Sliding Window of Data Stream
计算机科学, 2022, 49(10): 344-352. https://doi.org/10.11896/jsjkx.210700242
[8] 董晓梅, 王蕊, 邹欣开.
面向推荐应用的差分隐私方案综述
Survey on Privacy Protection Solutions for Recommended Applications
计算机科学, 2021, 48(9): 21-35. https://doi.org/10.11896/jsjkx.201100083
[9] 孙林, 平国楼, 叶晓俊.
基于本地化差分隐私的键值数据关联分析
Correlation Analysis for Key-Value Data with Local Differential Privacy
计算机科学, 2021, 48(8): 278-283. https://doi.org/10.11896/jsjkx.201200122
[10] 李少辉, 张国敏, 宋丽华, 王秀磊.
基于不完全信息博弈的反指纹识别分析
Incomplete Information Game Theoretic Analysis to Defend Fingerprinting
计算机科学, 2021, 48(8): 291-299. https://doi.org/10.11896/jsjkx.210100148
[11] 张学军, 杨昊英, 李桢, 何福存, 盖继扬, 鲍俊达.
融合语义位置的差分私有位置隐私保护方法
Differentially Private Location Privacy-preserving Scheme withSemantic Location
计算机科学, 2021, 48(8): 300-308. https://doi.org/10.11896/jsjkx.200900198
[12] 陈天荣, 凌捷.
基于特征映射的差分隐私保护机器学习方法
Differential Privacy Protection Machine Learning Method Based on Features Mapping
计算机科学, 2021, 48(7): 33-39. https://doi.org/10.11896/jsjkx.201200224
[13] 王乐业.
群智感知中的地理位置本地化差分隐私机制:现状与机遇
Geographic Local Differential Privacy in Crowdsensing:Current States and Future Opportunities
计算机科学, 2021, 48(6): 301-305. https://doi.org/10.11896/jsjkx.201200223
[14] 彭春春, 陈燕俐, 荀艳梅.
支持本地化差分隐私保护的k-modes聚类方法
k-modes Clustering Guaranteeing Local Differential Privacy
计算机科学, 2021, 48(2): 105-113. https://doi.org/10.11896/jsjkx.200700172
[15] 刘亚群, 邢长友, 高雅卓, 张国敏.
TopoObfu:一种对抗网络侦察的网络拓扑混淆机制
TopoObfu:A Network Topology Obfuscation Mechanism to Defense Network Reconnaissance
计算机科学, 2021, 48(10): 278-285. https://doi.org/10.11896/jsjkx.210400296
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!